562 resultados para INGAAS QUANTUM DOTS
Resumo:
Within the framework of the single-band effective-mass envelope-function theory, the effect of electric field on the electronic structures of pyramidal quantum dot is investigated. Taking the Coulomb interaction between the heavy holes and electron into account, the quantum confined Stark shift of the exciton as functions of the strength and direction of applied electric field and the size of the quantum dot are obtained. An interesting asymmetry of Stark shifts around the zero field is found. (C) 1997 Elsevier Science Ltd.
Resumo:
In the framework of effective mass envelope function theory, absorption coefficients are calculated for intraband (intersubband in the conduction band) optical transition in InAs/GaAs coupled quantum dots. In our calculation the microscpic distributon of the strain is taken into account. The absorption in coupled quantum dots is quite different from that of superlattices. In superlattices, the absorption does not exist when the electric vector of light is parallel to the superlattice plane (perpendicular incident). This introduces somewhat of a difficulty in fabricating the infrared detector. In quantum dots, the absorption exists when light incident along any direction, which may be good for fabricating infrared detectors.
Resumo:
In the framework of effective-mass envelope-function theory, the optical transitions of InAs/GaAs strained coupled quantum dots grown on GaAs (100) oriented substrates are studied. At the Gamma point, the electron and hole energy levels, the distribution of electron and hole wave functions along the growth and parallel directions, the optical transition-matrix elements, the exciton states, and absorption spectra are calculated. In calculations, the effects due to the different effective masses of electrons and holes in different materials are included. Our theoretical results are in good agreement with the available experimental data.
Resumo:
We have measured low-temperature photoluminescence spectra of InAs quantum dots embedded in a GaAs crystalline matrix under hydrostatic pressures up to 7 GPa. Below 4.2 GPa the spectra are dominated by the Gamma-like electron-heavy hole (HH) exciton transition in the InAs dots. Above 4.2 GPa the spectra show two X-related luminescence bands which are attributed to the indirect type-I transition between X(Xy) and HH states of the dots and the type-II transition from X states in GaAs to InAs HH states, respectively. In the Gamma-X crossover regime we find evidence for a pronounced mixing interaction between InAs Gamma-like and GaAs X-like states. The corresponding interaction potential is estimated to be 9 meV.
Resumo:
于2010-11-17批量导入
Resumo:
Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then,the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration,~20ns, bulk diffusion is forbidden, and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20~25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 × 10~(10)cm~(-2). The surface morphology evolution is investigated by AFM.
Resumo:
The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1. 48 μtm emission is obtained at room temperature. Temperature dependent PL measurements show that the PL intensity of the emission is very steady. It decays only to half as the temperature increases from 15 K to room temperature, while at the same time, the intensity of the other emission decreases by a factor of 5 orders of magnitude. These two emissions are attributed to large-size QDs and short period superlattices (SLs), respectively. Large-size QDs are easier to capture and confine carriers,which benefits the lifetime of PL, and therefore makes the emission intensity insensitive to the temperature.
Resumo:
In this paper, we calculated the elastic strain and elastic strain energy inside the semiconductor quantum dots by using the finite element programming package ANSYS 6.0. The values of elastic strain and strain energy in the three shapes of quantum dots were calculated, and led to the conclusion that the pyramid island structure of quantum dots is the most stable shape in the three shapes under thermal-equilibrium condition.
Resumo:
Self-organized In_(0.5)Ga_(0.5)As/GaAs quantum island structure emitting at 1. 35 (im at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs)_1/( GaAs)_1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In_(0.5)Ga_(0.5)As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.
Resumo:
于2010-11-23批量导入
Resumo:
Resumo:
In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.
Resumo:
Glass spherical microcavities containing CdSSe semiconductor quantum dots (QDs) of a few microns in diameter are fabricated using a physical method. When a single glass microspherical cavity is excited by a laser beam at room temperature, very strong and sharp whispering gallery modes are shown on the background of PL spectra of CdSSe QDs, which confirms that coupling between the optical emission of embedded QDs and spherical cavity modes is realized. For a glass microsphere only 4.6 mum in diameter, it was found that the energy separation is nearly up to 26 nm both for TE and TM modes. With the increasing excitation intensity, the excitation intensity dependence of the emission intensity is not linear in the double-logarithmic scale. Above the threshold value, the linewidths of resonance modes become narrower. The lasing behavior is achieved at relatively low excitation intensity at room temperature. High optical stability and low threshold value make this optical system promising in visible microlaser applications. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.
Resumo:
Growth interruption was introduced after the deposition of GaAs cap layer, which is thinner than the mean height of Quantum dots. Uniformity of quantum dots has been enhanced because the full width of half maximum of photoluminescence decrease from 80meV to 27meV in these samples as the interruption time increasing from 0 to 120 second. Meanwhile, we have observed that the peak position of photoluminescence is a function of interruption time. This effect can be used to control the energy level of quantum dots. The phenomena mentioned above can be attributed to the diffusion of In atoms from the top of InAs islands to the top of GaAs cap layer caused by the difference of surface energies between InAs and GaAs.