44 resultados para Macrophage suppression
Resumo:
The photoluminescence (PL) intensity enhancement and suppression mechanism on surface plasmons (SPs) coupling with InGaN/GaN quantum wells (QWs) have been systematically studied. The SP-QW coupling behaviors in the areas of GaN cap layer coated with silver thin film were compared at different temperatures and excitation powers. It is found that the internal quantum efficiency (IQE) of the light emitting diodes (LEDs) varies with temperature and excitation power, which in turn results in anomalous emission enhancement and suppression tendency related to SP-QW coupling. The observation is explained by the balance between the extraction efficiency of SPs and the IQE of LEDs
Resumo:
In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.
Resumo:
The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.
Resumo:
Suppression of the exciton recombination in GaAs0.7Sb0.3/GaAs/GaAs0.7P0.3 coupled quantum well (CQW) induced by an external magnetic field is investigated theoretically. Unlike the usual electro-Stark effect, the exciton energy dispersion of an exciton is modified by an external in-plane magnetic field, the ground state of the magnetoexciton shifts from a zero in-plane center of mass (CM) momentum to a finite CM momentum, and the Lorentz force induces the spatial separation of electron and hole. Consequently, this effect renders the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. This effect depends sensitively on the thickness and height of GaAs0.7Sb0.3 layer, therefore it could provide us useful infometion about the band alignment of CQW. (C) 2004 American Institute of Physics.
Resumo:
For a four-port microracetrack channel drop filter, unexpected transmission characteristics due to strong dispersive coupling are demonstrated by the light tunneling between the input-output waveguides and the resonator, where a large dropping transmission at off-resonance wavelengths is observed by finite-difference time-domain simulation. It causes a severe decline of the extinction ratio and finesse. An appropriate decrease of the coupling strength is found to suppress the dispersive coupling and greately increase the extinction ratio and finesse, a decreased coupling strength can be realized by the application of an asymmetrical coupling waveguide structure. In addition, the profile of the coupling dispersion in the transmission spectra can be predicted based on a coupled mode theory analysis of an equivalent system consisting of two coupling straight waveguides. The effects of structure parameters on the transmission spectra obtained by this method agree well with the numerical results. It is useful to avoid the strong dispersive coupling region in the filter design. (c) 2007 Optical Society of America.
Resumo:
Deep level defects in as-grown and annealed n-type and semi-insulating InP have been studied. After annealing in phosphorus ambient, a large quantity of deep level defects were generated in both n-type and semi-insulating InP materials. In contrast, few deep level defects exist in InP after annealing in iron phosphide ambient. The generation of deep level defects has direct relation with in-diffusion of iron and phosphorus in the annealing process. The in-diffused phosphorus and iron atoms occupy indium sites in the lattice, resulting in the formation of P anti-site defects and iron deep acceptors, respectively. T e results indicate that iron atoms fully occupy indium sites and suppress the formation of indium vacancy and P anti-site, etc., whereas indium vacancies and P anti-site defects. are formed after annealing in phosphor-us ambient. The nature of the deep level defects in InP has been studied based on the results.
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Resumo:
A differential recursive scheme for suppression of Peak to average power ratio (PAPR) for Orthogonal frequency division multiplexing (OFDM) signal is proposed in this thesis. The pseudo-randomized modulating vector for the subcarrier series is differentially phase-encoded between successive components in frequency domain first, and recursion manipulates several samples of Inverse fast Fourier transformation (IFFT) output in time domain. Theoretical analysis and experimental result exhibit advantage of differential recursive scheme over direct output scheme in PAPR suppression. And the overall block diagram of the scheme is also given.
Resumo:
Indium antisite defect In-P-related photoluminescence has been observed in Fe-diffused semi-insulating (SI) InP. Compared to annealed undoped or Fe-predoped SI InP, there are fewer defects in SI InP obtained by long-duration, high-temperature Fe diffusion. The suppression of the formation of point defects in Fe-diffused SI InP can be explained in terms of the complete occupation by Fe at indium vacancy. The In-P defect is enhanced by the indium interstitial that is caused by the kick out of In and the substitution at the indium site of Fe in the diffusion process. Through these Fe-diffusion results, the nature of the defects in annealed undoped SI InP is better understood. (C) 2002 American Institute of Physics.
Resumo:
The behavior of room temperature self-sustained current oscillations resulting from sequential resonance tunneling in a doped weakly-coupled GaAs/AlAs superlattice (SL) is investigated under hydrostatic pressure. From atmosphere pressure to 6.5 kbar, oscillations exist in the whole plateau of the I-V curve and oscillating characteristics are affected by the pressure. When hydrostatic pressure is higher than 6.5 kbar, the current oscillations are completely suppressed although a current plateau still can be seen in the I-V curve. The plateau disappears when the pressure is close to 13.5 kbar. As the main effect of hydrostatic pressure is to lower the X point valley with respect to Gamma point valley, the disappearance of oscillation and the plateau shrinkage before Gamma - X resonance takes place are attributed to the increases of thermoionic emission and nonresonant tunneling components determined by the lowest Gamma - X barrier height in GaAs/AlAs SL structure.
Resumo:
When an intersubband relaxation is involved in vertical transport in a tunneling heterostructure, the magnetic suppression of the intersubband LO or LA phonon scattering may also give rise to a noticeable depression of the resonant tunneling current, unrelated to the Coulomb correlation effect. The slowdown of the intersubband scattering rate makes fewer electrons able to tunnel resonantly between two adjacent quantum wells (QWs) in a three-barrier, two-well heterostructure. The influence of the magnetic field on the intersubband relaxation can be studied in an explicit way by a physical model based on the dynamics of carrier populations in the ground and excited subbands of the incident QW. (C) 1998 American Institute of Physics. [S0003-6951(98)00925-5].
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Improvement of the electrical property of semi-insulating InP by suppression of compensation defects
Resumo:
Semi-insulating (SI) InP obtained by iron phosphide ambient annealing has very low concentration of deep level defects and better electrical property than SI-InP annealed in phosphorus ambient. The defect suppression phenomenon correlates with Fe diffusion and substitution in the annealing process. Analysis of the experimental result suggests that a high activation ratio of incorporated Fe in InP has an effect of defect suppression in Fe-doped and Fe-diffused SI-InP.
Resumo:
We have conducted numerical studies of ballistic electron transport in a semiconductor II-structure when an external transverse electric field is applied. The device conductance as a function of electron energy and the strength of the transverse electric field is calculated on the basis of tight-binding Green's function formalism. The calculations show that a relatively weak electric field can induce very large decrease in the electron transmission across the structure. When the transverse electric field is sufficiently strong, electrons can hardly be transported through the device. Thus the performance of the device can be greatly improved for it is much easier to control electron transport through the device with an external transverse electric field.
Resumo:
A Geiger mode planar InGaAs/InP avalanche photodiode (APD) with a cascade peripheral junction structure to suppress edge breakdowns is designed by finite-element analysis. The photodiode breakdown voltage is reduced to 54.3V by controlling the central junction depth, while the electric field distribution along the device central axis is controlled by adjusting doping level and thickness of the lnP field control layer. Using a cascade junction structure at the periphery of the active area, premature edge breakdowns are effectively suppressed. The simulations show that the quadra-cascade structure is a good trade-off between suppression performance and fabrication complexity, with a reduced peak electric field of 5.2 × 10~5 kV/cm and a maximum hole ionization integral of 1. 201. Work presented in this paper provides an effective way to design high performance photon counting InGaAs/InP avalanche photodiodes.