280 resultados para LOW-TEMPERATURE GROWTH
Resumo:
The V/III ratio in the initial growth stage of metalorganic chemical vapor deposition has an important influence on the quality of a GaN epilayer grown on a low-temperature AIN buffer layer and c-plane sapphire substrate. A weaker yellow luminescence, a narrower half-width of the X-ray diffraction peak, and a higher electron mobility result when a lower V/III ratio is taken. The intensity of in situ optical reflectivity measurements indicates that the film surface is rougher at the beginning of GaN growth, and a longer time is needed for the islands to coalesce and for a quasi-two dimensional mode growth to start. A comparison of front- and back-illuminated photoluminescence spectra confirms that many threading dislocations are bent during the initial stage, leading to a better structural quality of the GaN layer. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
High-quality In0.25Ga0.75As films were grown on low-temperature (LT) ultra-thin GaAs buffer layers formed on GaAs (0 0 1) substrate by molecular beam epitaxy. The epilayers were studied by atomic force microscopy (AFM), photo luminescence (PL) and double crystal X-ray diffraction (DCXRD), All the measurements indicated that LT thin buffer layer technique is a simple but powerful growth technique for heteroepitaxy. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A low-temperature Si0.8Ge0.2 (LT-Si0.8Ge0.2) interlayer was grown at 500 degrees C to improve the relaxed Si0.8Ge0.2 surface and reduce the dislocation density in it, which was confirmed by the change of reflective high-energy electron diffraction (RHEED) pattern from spotty to streaky and etch pits counts. For the same extent of strain; the threading dislocation density was reduced from 8 x 10(7) cm(-2) in the latter to 2 x 10(6) cm(-2) in the former. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Ge composition dependence on the Ge cell temperature has been studied during the growth of Si1-xGex by disilane and solid Ge molecular beam epitaxy at a substrate temperature of 500 degrees C. It is found that the composition x increases and then saturates when the Ge cell temperature increases, which is different from the composition-dependent behavior in growth at high temperature as well as in growth by molecular beam epitaxy using disilane and germane. The enhanced hydrogen desorption from a Ge site alone cannot account for this abnormal composition-variation behavior. We attribute this behavior to the increase of rate constant of H desorption on a Si site when the Ge cell temperature increases.
Resumo:
The temperature is a key factor for the quality of the SiGe alloy grown by D-UHV/CVD. In conventional conditions,the lowest temperature for SiGe growth is about 550℃. Generally, the pressure of the growth chamber is about 10~(-5) Pa when liquid nitrogen is introduced into the wall of the growth chamber with the flux of 6sccm of the disilane gas. We have succeeded in depositing SiGe films at much lower temperature using a novel method. It is about 10.2 Pa without liquid nitrogen, about 3 magnitudes higher than the traditional method,leading to much faster deposition rate. Without liquid nitrogen,the SiGe film and SiGe/Si superlattice are grown at 485℃. The DCXRD curves and TEM image show that the quality of the film is good. The experiments show that this method is efficient to deposit SiGe at low temperature.
Resumo:
Contacting mode atomic force microscopy (AFM) is used to measure the In0.asGao.65As/GaAs epilayer grown at low temperature (460°C). Unlike the normal layer-by-layer growth (FvdM mode) or self-organized islands growth (SK mode) ,samples grown under 460 C are found to be large islands with atomic thick terraces. AFM measurements reveale near one monolayer high steps. This kind of growth is good between FvdM and SK growth modes and can be used to understand the evolution of strained epitaxy from FvdM to SK mode.
Resumo:
High quality cubic GaN was grown on Silicon (001) by metalorganic vapor phase epitaxy (MOVPE) using a GaAs nucleation layer grown at low temperature. The influence of various nucleation conditions on the GaN epilayers' quality was investigated. We found that the GaAs nucleation layer grown by atomic layer epitaxy (ALE) could improve the quality of GaN films by depressing the formation of mixed phase. Photoluminescence (PL) and X-ray diffraction were used to characterize the properties of GaN epilayers. High quality GaN epilayers with PL full width at half maximum (FWHM) of 130meV at room temperature and X-ray FWHM of 70 arc-min were obtained by using 10-20nm GaAs nucleation layer grown by ALE.
Resumo:
To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.
Resumo:
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.
Resumo:
A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the optical properties of AlGaN grown on sapphire. It is found that two main luminescence peaks occur in the cathodoluminescence (CL) spectra of AlGaN films, and their energy separation increases with the increase of Al source flux during the growth. Spatially resolved CL investigations have shown that the line splitting is a result of variation of AlN mole fraction within the layer. The Al composition varies in both lateral and vertical direction. It is suggested that the difference in the surface mobility of Al and Ga atoms, especially, its strong influence on the initial island coalescence process and the formation of island-like regions on the uneven film surface, is responsible for the Al composition inhomogeneity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study describes the growth of a low-temperature AlN interlayer for crack-free GaN growth on Si(111). It is demonstrated that, in addition to the lower growth temperature, growth of the AlN interlayer under Al-rich conditions is a critical factor for crack-free GaN growth on Si(111) substrates. The effect of the AlN interlayer thickness and NH3/TMA1 ratios on the lattice constants of subsequently grown high temperature GaN was investigated by X-ray triple crystal diffraction. The results show that the elimination of micro-cracks is related to the reduction of the tensile stress in the GaN epitaxial layers. This was also coincident with a greater number of pits formed in the AlN interlayer grown under Al rich conditions. It is proposed that these pits act as centers for the generation of misfit dislocations, which in turn leads to the reduction of tensile stress. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Effects of V/III ratio on heavily Si doped InGaAs and InP were studied using low pressure metalorganic chemical vapor deposition (LP-MOCVD) at a growth temperature of 550degreesC. In InGaAs, as the V/III ratio decreases from 256 to 64, the carrier concentration increases from 3.0 x 10(18) to 5.8 x 10(18) cm(-3), and the lattice mismatch of InGaAs to InP was observed to vary from -5.70 x10(-4) to 1.49 x 10(-3). In InP, when the V/III ratio decreases from 230 to 92, the same trend as that in Si doped InGaAs was observed that the carrier concentration increases from 9.2 x 10(18) to 1.3 x 10(19) cm(-3). The change of AsH3 was found to have stronger effect on Si incorporation in InGaAs at lower growth temperature than at higher growth temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the effect of the thickness and layer number of the low-temperature A1N interlayer (LT-A1N IL) on the stress relaxation and the crystal quality of GaN epilayers grown on Si (111) substrate by metalorganic chemical vapor deposition. It is found that the stress decreases with the increase of the LT-AIN IL thickness, but the crystal quality of the GaN epilayer goes worse quickly when the LT-AIN IL thickness is larger than 16 nm. This is because the increase of the LT-AIN IL thickness will increase the coalescence thickness of its upper GaN layer, which sensitively affects the crystal quality of the epilayer. Using multiple LT-AIN ILs is an effective method not only to reduce the stress, but also to improve the crystal quality of the GaN epilayer. With the increase of the interlayer number, the probability that dislocations are blocked increases and the probability that dislocations are produced at interfaces decreases. Thus, dislocations in the most upper part of GaN are reduced, resulting in the improvement of the crystal quality. Finally, it is suggested that when the total thickness of the epilayer is fixed, both the thickness and the number of the LT-AIN IL should be carefully designed to reduce the stress and improve the crystal quality of the epilayer simultaneously. (c) 2004 Elsevier B.V.. All rights reserved.
Resumo:
The temperature and pressure dependences of band-edge photo luminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of k(B)T with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively. (c) 2006 Elsevier Ltd. All rights reserved.