343 resultados para Si-29
Resumo:
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural proper-ties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.
Resumo:
GaN epilayers were grown on Si(111) substrate by metalorganic chemical vapor deposition. By using the Al-rich AlN buffer which contains Al beyond stoichiometry, crack-free GaN epilayers with 1 mum thickness were obtained. Through x-ray diffraction (XRD) and secondary ion mass spectroscopy analyses, it was found that a lot of Al atoms have diffused into the under part of the GaN epilayer from the Al-rich AlN buffer, which results in the formation of an AlxGa1-xN layer at least with 300 nm thickness in the 1 mum thick GaN epilayer. The Al fraction x was estimated by XRD to be about 2.5%. X-ray photoelectron spectroscopy depth analysis was also applied to investigate the stoichiometry in the Al-rich buffer before GaN growth. It is suggested that the underlayer AlxGa1-xN originated from Al diffusion probably provides a compressive stress to the upper part of the GaN epilayer, which counterbalances a part of tensile stress in the GaN epilayer during cooling down and consequently reduces the cracks of the film effectively. The method using the Al diffusion effect to form a thick AlGaN layer is really feasible to achieve the crack-free GaN films and obtain a high crystal quality simultaneously. (C) 2004 American Institute of Physics.
Resumo:
This study describes the growth of a low-temperature AlN interlayer for crack-free GaN growth on Si(111). It is demonstrated that, in addition to the lower growth temperature, growth of the AlN interlayer under Al-rich conditions is a critical factor for crack-free GaN growth on Si(111) substrates. The effect of the AlN interlayer thickness and NH3/TMA1 ratios on the lattice constants of subsequently grown high temperature GaN was investigated by X-ray triple crystal diffraction. The results show that the elimination of micro-cracks is related to the reduction of the tensile stress in the GaN epitaxial layers. This was also coincident with a greater number of pits formed in the AlN interlayer grown under Al rich conditions. It is proposed that these pits act as centers for the generation of misfit dislocations, which in turn leads to the reduction of tensile stress. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Silicon sheets from powder (SSP) ribbons have been prepared by modified SSP technique using electronic-grade (9N purity) silicon powder. The surface morphology, crystallographic quality, composition and electric properties of the SSP ribbons were investigated by surface profiler, X-ray diffraction (XRD), scanning electron microscopy (SEM), metallurgical microscope, Auger electron spectroscopy (AES) and four-point probe apparatus, respectively. The results show that the SSP ribbon made from electronic-grade silicon powder is a suitable candidate for the substrates of crystalline silicon thin film (CSiTF) solar cells, which could meet the primary requirements of CSiTF solar cell process on the substrates, including surface smoothness, crystallographic quality, purity and electric conductivity, etc. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Novel room temperature photoluminescence (PL) of the Ge/Si islands in multilayer structure grown on silicon-on-insulator substrates is investigated. The cavity formed by the mirrors at the surface and the buried SiO2 interface has a strong effect on the PL emission. The peak position is consistent with the theoretical calculation and independent of the exciting power, which is the evidence of cavity effect on the room temperature photoluminescence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel and simple way to prepare high-reflectivity bottom mirrors for Si-based micro-cavity devices is reported. The bottom mirror was deposited in the hole, which was etched from the backside of the sample by ethylenediamine-pyrocatechol-water solution with the buried Sio, layer in the silicon-on-insulator substrate as the etching-stop layer. The high-reflectivity of the bottom mirror deposited in the hole and the narrow hill width at half maximum of the cavity formed by this method both indicate the successful preparation of the bottom mirror for Si-based micro-cavity devices.
Resumo:
In this work, a novel bonding method using silicate gel as the bonding medium was developed to fabricate an InGaAs narrow-band response resonant cavity enhanced photodetector on a silicon substrate. The bonding was performed at a low temperature of 350 degreesC without any special treatment on bonding surfaces and a Si-based narrow-band response InGaAs photodetector was successfully fabricated, with a quantum efficiency of 34.4% at the resonance wavelength of 1.54 mum, and a full-width at half-maximum of about 27 nm. The photodetector has a linear photoresponse up to 4-mW optical power under 1.5 V or higher reverse bias. The low temperature wafer bonding process demonstrates a great potential in device fabrication.
Crystallization of amorphous Si films by pulsed laser annealing and their structural characteristics
Resumo:
Nanocrystalline silicon (nc-Si) films were prepared by pulsed laser annealed crystallization of amorphous silicon (alpha-Si) films on SiO2-coated quartz or glass substrates. The effect of laser energy density on structural characteristics of nc-Si films was investigated. The Ni-induced crystallization of the a-Si films was also discussed. The surface morphology and microstructure of these films were characterized by scanning electron microscopy, high-resolution electron microscopy, atomic force microscopy and Raman scattering spectroscopy. The results show that not only can the alpha-Si films be crystallized by the laser annealing technique, but also the size of Si nanocrystallites can be controlled by varying the laser energy density. Their average size is about 4-6 nm. We present a surface tension and interface strain model used for describing the laser annealed crystallization of the alpha-Si films. The doping of Ni atoms may effectively reduce the threshold value of laser energy density to crystallize the alpha-Si films, and the flocculent-like Si nanostructures could be formed by Ni-induced crystallization of the alpha-Si films.
Resumo:
A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The variation of the structure, morphology and the electrical properties of thin amorphous silicon films caused by Rapid Thermal Annealing is studied. The films annealed at 1200degreesC for 2 minutes change their structure to polycrystalline and as a result their resistivity decreases by 4 orders of magnitude. Due to the small thickness of the as deposited amorphous silicon the obtained poly-Si is strongly irregular and has many discontinuities in its texture.
Microstructural and compositional characteristics of GaN films grown on a ZnO-buffered Si(111) wafer
Resumo:
Polycrystalline GaN thin films have been deposited epitaxially on a ZnO-buffered (111)-oriented Si substrate by molecular beam epitaxy. The microstructural and compositional characteristics of the films were studied by analytical transmission electron microscopy (TEM). A SiO2 amorphous layer about 3.5 nm in thickness between the Si/ZnO interface has been identified by means of spatially resolved electron energy loss spectroscopy. Cross-sectional and plan-view TEM investigations reveal (GaN/ZnO/SiO2/Si) layers exhibiting definite a crystallographic relationship: [111](Si)//[111](ZnO)//[0001](GaN) along the epitaxy direction. GaN films are polycrystalline with nanoscale grains (similar to100 nm in size) grown along [0001] direction with about 20degrees between the (1 (1) over bar 00) planes of adjacent grains. A three-dimensional growth mode for the buffer layer and the film is proposed to explain the formation of the as-grown polycrystalline GaN films and the functionality of the buffer layer. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A review is presented on recent research development of self-organized Ge/Si quantum dots (QDs). Emphasis is put on the morphological evolution of the Ge quantum dots grown on Si (001) substrate, the structure analysis of multilayer Ge QDs, the optical and electronic properties of these nanostructures, and the approaches to fabricating ordered Ge quantum dots.
Resumo:
Sharp and strong room-temperature photoluminescence (PL) of the Si0.59Ge0.41/Si multiquantum wells grown on the silicon-on-insulator substrate is investigated. The cavity formed by the mirrors at the surface and the buried SiO2 interface enhances the PL emission and has a wavelength-selective effect on the luminescence. The peak position is consistent with the simulation result and independent of the exciting power, which indicates a strong cavity effect on the room-temperature PL. (C) 2004 American Institute of Physics.
Resumo:
Preferred growth of nanocrystalline silicon (nc-Si) was first found in boron-doped hydrogenated nanocrystalline (nc-Si:H) films prepared using plasma-enhanced chemical vapor deposition system. The films were characterized by high-resolution transmission electron microscope, X-ray diffraction (XRD) spectrum and Raman Scattering spectrum. The results showed that the diffraction peaks in XRD spectrum were at 2theta approximate to 47degrees and the exponent of crystalline plane of nc-Si in the film was (220). A considerable reason was electric field derived from dc bias made the bonds of Si-Si array according to a certain orient. The size and crystalline volume fraction of nc-Si in boron-doped films were intensively depended on the deposited parameters: diborane (B2H6) doping ratio in silane (SiH4), silane dilution ratio in hydrogen (H-2), rf power density, substrate's temperature and reactive pressure, respectively. But preferred growth of nc-Si in the boron-doped nc-Si:H films cannot be obtained by changing these parameters. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Raman scattering and photoluminescence (PL) of boron-doped silicon nanowires have been investigated. Raman spectra showed a band at 480 cm(-1), indicating that the crystallinity of the nanowires was suppressed by boron doping. PL taken from B-doped SiNWS at room temperature exhibited three distinct emission peaks at 1.34, 1.42. and 1.47 eV and the PL intensity was much stronger than that of undoped SiNWS. The increased PL intensity should be very profitable for nano-optoelectronics. (C) 2004 Elsevier B.V. All rights reserved.