228 resultados para Strain-path reversal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the optical properties of asymmetric multiple layer stacked self-assembled InAs quantum dot with different interlayer. We found that asymmetric multiple stacked QD samples with In0.2Ga0.8As + GaAs interlayer can afford a 180nm flat spectral width with strong PL intensity compared to other samples at room temperature. We think this result is due to the introduction of In0.2Ga0.8As strain-reducing layer. Additionally, for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for quantum-dot superluminescent diodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that part of the reflectance difference resonance near the E-0 energy of ZnSe is due to the anisotropic in-plane strain in the ZnSe thin films, as films grown on three distinctly different substrates, GaAs, GaP, and ZnS, all show the resonance at the same energy. Such anisotropic strain induced resonance is predicted and also observed near the E-1/E-1+Delta(1) energies in ZnSe grown on GaAs. The theory also predicts that there should be no resonance due to strain at, the E-0+Delta(0) energy, which is consistent with experiments. The strain anisotropy is rather independent of the ZnSe layer thickness, or whether the film is strain relaxed. For ZnSe films with large lattice mismatch with substrates, the resonance at the E-1/E-1+Delta(1) energies is absent, very likely due to the poor crystalline quality of the 20 nm or so surface layer. (C) 2000 American Vacuum Society. [S0734-211X(00)05604-3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a low-temperature (LT) growth technique. Even with Ge fraction x upto 90%, the total thickness of fully relaxed GexSi1-x buffers can he reduced to 1.7 mu m with dislocation density lower than 5 x 10(6) cm(-2). The surface roughness is no more than 6 nm. The strain relaxation is quite inhomogeneous From the beginning. Stacking faults generate and form the mismatch dislocations in the interface of GeSi/LT-Si. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the annealing behavior of Photoluminescence (PL) from self-assembled InAs quantum dots (QDs) with different thicknesses GaAs cap layers. The diffusion introduced by annealing treatment results in a blue-shift of the QD PL peak, and a decrease in the integrated intensity. The strain present in QDs enhances the diffusion, and the QDs with the cap layers of different thicknesses will experience a strain of different strength. This can lend to a, better understanding of the larger blue-shift of the PL peak of the deeper buried QDs, and the different variance of the full width at half maximum of the luminescence from QDs with the cap layers of different thicknesses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin splitting in GaN-based heterostructures has been investigated by means of circular photogalvanic effect experiments under uniaxial strain. The ratios of Rashba and Dresselhaus spin-orbit coupling coefficients (R/D ratios) have been measured in AlxGa1-xN/GaN heterostructures with various Al compositions. It is found that the R/D ratio increases from 4.1 to 19.8 with the Al composition of the AlxGa1-xN barrier varied from 15% to 36%. The Dresselhaus coefficient of bulk GaN is experimentally obtained to be 0.4 eV angstrom(3). The results indicate that the spin splitting in GaN-based heterostructures can be modulated effectively by the polarization-induced electric fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the theoretical results of the electronic band structure of wurtzite GaN films under biaxial strains in the (11 (2) over bar2)-plane The calculations are performed by the kappa p perturbation theory approach through using the effective-mass Hamiltonian for an arbitrary direction The results show that the transition energies decrease with the biaxial strains changing from -0 5% to 0 5% For films of (11 (2) over bar2)-plane, the strains are expected to be anisotropic in the growth plane Such anisotropic strains give rise to valence band mixing which results in dramatic change in optical polarisation property The strain can also result in optical polarisation switching phenomena Finally, we discuss the applications of these properties to the (11 (2) over bar2) plane GaN based light emitting diode and lase diode

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new framework of non-local model for the strain energy density is proposed in this paper. The global strain energy density of the representative volume element is treated as a non-local variable and can be obtained through a special integral of the local strain energy density. The local strain energy density is assumed to be dependent on both the strain and the rotation-gradient. As a result of the non-local model, a new strain gradient theory is derived directly, in which the first and second strain gradients, as well as the triadic and tetradic stress, are introduced in the context of work conjugate. For power law hardening materials, size effects in thin metallic wire torsion and ultra-thin cantilever beam bend are investigated. It is found that the result predicted by the theoretical model is well consistent with the experimental data for the thin wire torsion. On the other hand, the calculation result for the micro-cantilever beam bend clearly shows the size effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we review our recent advances in understanding the deformation behavior of a typical tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1) bulk metallic glass (BMG), as a model material, under various loading modes and strain rates, focusing particularly on the rate-dependence and formation mechanism of shear-banding. Dynamic and quasi-static mechanical experiments, including plate shear, shear punch and spherical indentation, and continuum as well as atomistic modeling on shear-banding are discussed. The results demonstrate that higher strain rate slows down the annihilation process of free volume, but promotes the free-volume coalescence, which is responsible for the rate-dependent shear banding. The physical origin of shear bands, that is the free volume softening underpinned by irreversible rearrangements of atoms, is unveiled. Finally, some concluding remarks are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.