475 resultados para quantum dot lasers
Resumo:
Resumo:
We have investigated the optical properties of asymmetric multiple layer stacked self-assembled InAs quantum dot with different interlayer. We found that asymmetric multiple stacked QD samples with In0.2Ga0.8As + GaAs interlayer can afford a 180nm flat spectral width with strong PL intensity compared to other samples at room temperature. We think this result is due to the introduction of In0.2Ga0.8As strain-reducing layer. Additionally, for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for quantum-dot superluminescent diodes.
Resumo:
The growth of GalnNAs/GaAs quantum well (QW) has been investigated by solid-source molecular beam epitaxy (MBE). N was introduced by a dc-active plasma source. Highest N concentration of 2.6% in GaInNAs/GaAs QW was obtained, corresponding to the photoluminescence peak wavelength of 1.57 mum at 10K. The nitrogen incorporation behavior in MBE growth and the quality improvement of the QW have been studied in detail. 1.3 mum GaInNAs/GaAs SQW laser and MQW resonant-cavity enhanced photodetector have been achieved.
Resumo:
The growth of GaInNAs/GaAs quantum wells (QW) was investigated by solid-source molecular beam epitaxy. N was introduced by a dc-active plasma source. The effect of growth conditions such as on the N incorporation and photoluminescence (PL) intensity of the QWs has been studied. The PL peak intensity decreased and the PL fun width at half maximum increased with increasing N concentrations. The highest N concentration of 2.6% in a GaInNAs/GaAs QW was obtained, and corresponding to a PL peak wavelength of 1.57 mum at 10K. Rapid thermal annealing at 850degreesC significantly improved the crystal quality of the QWs. An optimum annealing time of 5s at 850degreesC was obtained. A GaInNAs/GaAs SQW laser with the emitting wavelength of 1.2 mum and a high characteristic temperature of 115 K was achieved at room temperature.
Resumo:
We theoretically study the electron transport through a double quantum dot (QD) in the Coulomb blockade regime and reveal the phase character of the transport by embedding the double QD in a mesoscopic Aharonov-Bohm ring. It is shown that coherent transport through the double QD is preserved in spite of intradot and interdot Coulomb interactions.
Resumo:
GaAs/AlGaAs quantum dot arrays with different dot sizes made by different fabrication processes were studied in this work. In comparison with the reference quantum well, photoluminescence (PL) spectra from the samples at low temperature have demonstrated that PL peak positions shift to higher energy side due to quantization confinement effects and the blue-shift increases with decreasing dot size, PL linewidths are broadened and intensities are much reduced. It is also found that wet chemical etching after reactive ion etching can improve optical properties of the quantum dot arrays.
Resumo:
Main application of 650nm band laser diodes are for digital versatile disk (DVD). We demonstrate here the 650nm AlGaInP LD grown by LP-MOCVD with the structure of selected buried ridge waveguide. Excellent performance of LD have been achieved such as threshold current, threshold current density as low as 20mA and 350A/cm(2) respectively at room temperature, the operating temperature up to 90 for the linear power output of 5mw. RIN is about -130db/Hz, The samples of LD have been certified by PUH manufacturers.
Resumo:
Comparative electroluminescence (EL) and photoluminescence (PL) measurements were performed on Si/Si0.6Ge0.4 self-assembly quantum dots (QDs) structures. The samples were grown pseudomorphically by molecular beam epitaxy, and PIN diodes for electroluminescence were fabricated. Assisted TEM pictures shows the SiGe self-assembly QDs are platelike. And it showed that the diameters of QDs are in range from 40nm to 140nm with the most in 120nm. Both EL and PL has a wide luminescence peak due to wide distribution of QDs dimensions. At low temperature (T=14K), EL peak has a red shift compared to the corresponding PL peak. Its full-width at half-maximum (FWHM) is about 97meV, a little smaller than that of corresponding PL peak. The reasons of position and FWHM changes of EL peak from QDs have been discussed.
Resumo:
In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.
Resumo:
The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.
Resumo:
A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
After capping InAs islands with a thin enough GaAs layer, growth interruption has been introduced. Ejected energy of self-organized InAs/GaAs quantum dots has been successfully tuned in a controlled manner by changing the thickness of GaAs capping layer and the time of growth interruption and InAs layer thickness. The photoluminescence (PL) spectra showing the shift of the peak position reveals the tuning of the electronic states of the QD system. Enhanced uniformity of Quantum dots is observed judging from the decrease of full width at half maximum of FL. Injection InAs/GaAs quantum dot lasers have been fabricated and performed on various frequencies. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.