395 resultados para Nitrogen Doping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence measurements were performed on p-type co-doping effects of C, As, and Mg in GaN. The dopants were incorporated into GaN by ion implantation performed at 77 K. We find that the 3.42 eV luminescence line is sensitive to hole concentration, and propose that after cartful calibration the 3.42 eV line may be used as a probe to measure hole concentration in GaN. Simply doping one kind of accepters will not result in holes, while co-doping can substantially improve p-type doping efficiency. As + C and As + Mg co-doping induce an acceptor level of 180 meV above the valence band. Mg + C co-doping is the most promising method for p-type doping, the related acceptor level is determined to be as shallow as 130 meV. The improvement of the doping efficiency by co-doping is probably due to the decrease of the acceptor ionization energy. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the photoluminescence (PL) properties of nitrogen-doped ZnSe epilayers grown by molecular beam epitaxy using a nitrogen radio frequency-plasma source. The PL data shows that the relative intensity of the donor-bound exciton (I-2) emission to the acceptor-bound exciton (I-1) emission strongly depends on both the excitation power and the temperature. This result is explained by a thermalization model of the bound exciton which involved in the capture and emission between the neutral donor bound exciton, the neutral acceptor bound exciton and the free exciton. Quantitative analysis with the proposed mechanism is in good agreement with the experimental data. (C) 1999 American Institute of Physics. [S0021-8979(99)09102-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality GaN epilayers have been grown by gas source molecular beam epitaxy using ammonia as the nitrogen source. During the growth, the growth rate is up to 1.2 mu m/h and can be varied from 0.3 to 1.2 mu m. The unintentional n-type doping as low as 7x10(17) cm(-3) was obtained at room temperature. Low-temperature photoluminescence spectrum was dominated by near-edge emission without deep-level related luminescence, indicative of high-quality epilayers. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3C-SiC is a promising material for the development of microelectromechanical systems (MEMS) applications in harsh environments. This paper presents the LPCVD growth of heavily nitrogen doped polycrystalline 3C-SiC films on Si wafers with 2.0 mu m-thick silicon dioxide (SiO2) films for resonator applications. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H-2 in a newly developed vertical CVD chamber. NH3 was used as n-type dopant. 3C-SiC films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and room temperature Hall Effect measurements. It was shown that there is no voids at the interface between 3C-SiC and SiO2. Undoped 3C-SiC films show n-type conduction with resisitivity, Hall mobility, and carrier concentration at room temperature of about 0.56 Omega center dot cm, 54 cm(2)/Vs, and 2.0x 10(17) cm(-3), respectively. The heavily nitrogen doped polycrystalline 3C-SiC with the resisitivity of less than 10(-3) Omega center dot cm was obtained by in-situ doping. Polycrystalline SiC resonators have been fabricated preliminarily on these heavily doped SiC films with thickness of about 2 mu m. Resonant frequency of 49.1 KHz was obtained under atmospheric pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid nitrogen is very important for MBE system. Most MBE systems use the liquid nitrogen to absorb the impurity molecules. If MBE cryoshroud is lack of liquid nitrogen, the pressure of the growth chamber will grow. This will affect the film quality. But too much liquid nitrogen is a waste. We have developed a liquid nitrogen flowrate alarm system to monitor the liquid nitrogen status in MBE cryoshroud. In this method, a temperature sensor is placed at the end of the cryoshroud. The temperature varies with changing of the liquid nitrogen status in cryoshroud. If the liquid nitrogen level in the cryoshroud is too low or too high, the LNFA will send out an alarm to warn the user to adjust the liquid nitrogen flowrate. In our experiments, we found this method works well, and the temperature responds sensitively. With the help of this system, people can view the liquid nitrogen status of the entire growth process. Compare with other method. it is very cheap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was supported by the National Research Projects of China (grant numbers are 60525406, 60736031, 60806018, 60906026, 2006CB604903, 2007AA03Z446 and 2009AA03Z403, 10990100, respectively). The authors would like to thank P Liang, Y Hu, H Sun, X L Zhang, B J Sun, H L Zhen and N Li for their help in processing and characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical description of chloride vapour-phase epitaxy (CVPE) has been proposed which contains two-dimensional (2D) gas-dynamic equations for transport of reactive components and kinetic equations for surface growth processes connected by nonlinear adiabatic boundary conditions. No one of these stages is supposed to be the limiting one. Calculated variations of growth rate and impurity concentrations along the growing layer fit experimental data well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the photovoltaic effects in Si doping superlattices (nipi) under different excitation conditions with and without additional cw optical biasing using a He-Ne laser. On the basis of the photovoltaic theory of carrier spatial separation in superlattices, we propose the concept of spatial fixity of the photovoltage polarity in type-II superlattices and examine the experimental results. The photovoltaic effect in Si nipi is found mainly from the direct transitions related with shallow impurities in real space, not the electron-hole band-to-band process as in GaAs nipi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition and microstructure of buried layers of AlN formed by high energy N+ ion implantation into polycrystalline Al have been determined. Both bulk and evaporated thin films of Al have been implanted with 100 and 200 keV N+ ions to doses of up to 1.8 x 10(18)/cm2. The layers have been characterised using SIMS, XTEM, X-ray diffraction, FTIR, RBS and in terms of their microhardness. It is found that, for doses greater than the critical dose, buried, polycrystalline AlN layers are formed with preferred (100) or (002) orientations, which are sample specific. With increasing dose the nitrogen concentration saturates at the value for stoichiometric AlN although the synthesised compound is found to be rich in oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid films containing phosphorus impurities were formed on p-type silicon wafer surface by traditional spin-on of commercially available dopants. The doping process is accomplished by irradiating the sample with a 308 nm XeCl pulsed excimer laser. Shallow junctions with a high concentration of doped impurities were obtained. The measured impurity profile was ''box-like'', and is very suitable for use in VLSI devices. The characteristics of the doping profile against laser fluence (energy density) and number of laser pulses were studied. From these results, it is found that the sheet resistance decreases with the laser fluence above a certain threshold, but it saturates as the energy density is further increased. The junction depth increases with the number of pulses and the laser energy density. The results suggest that this simple spin-on dopant pre-deposition technique can be used to obtain a well controlled doping profile similar to the technique using chemical vapor in pulsed laser doping process.