836 resultados para GAAS-ALAS SUPERLATTICES
Resumo:
The effect of rapid thermal annealing (RTA) on the optical properties of GaNxAs1-x/GaAs strained single quantum well (SQW) was studied by low-temperature photoluminescence (PL). The GaNxAs1-x/GaAs SQW structures were prepared by dc active nitrogen plasma assisted molecular beam epitaxy. PL measurements on a series of samples with different well widths and nitrogen compositions were used to evaluate the effects of RTA. The annealing temperature and time were varied from 650 to 850 degrees C and 30 s to 15 min, respectively. Remarkable improvements of the optical properties of the samples were observed after RTA under optimum conditions. The interdiffusion constants have been calculated by taking into account error function diffusion and solving the Schrodinger equation. The estimated interdiffusion constants D are 10(-17)-10(-16) cm(2)/s for the earlier annealing conditions. Activation energies of 6-7 eV are obtained by fitting the temperature dependence of the interdiffusion constants. (C) 2000 American Institute of Physics. [S0021-8979(00)10401-3].
Resumo:
The strain effect on the band structure of InAs/GaAs quantum dots has been investigated. 1 mu m thick InGaAs cap layer was added onto the InAs quantum dot layer to modify the strain in the quantum dots. The exciton energies of InAs quantum dots before and after the relaxation of the cap layer were determined by photoluminescence. When the epilayer was lifted off from the substrate by etching away the sacrifice layer (AlAs) by HF solution, the energy of exciton in the quantum dots decreases due to band gap narrowing resulted from the strain relaxation. This method can be used to obtain much longer emission wavelength from InAs quantum dots.
Resumo:
A ZnTe layer grown on GaAs substrate by hot-wall epitaxy (HWE) was studied using transmission electron microscopy (TEM). For a (110) cross-sectional specimen, its (001) ZnTe/GaAs interface was analysed by large angle stereo-projection (LASP) and high resolution electron microscopy (HREM). In the LASP, a double diffraction occurred and moire fringes were formed, meanwhile misfit dislocations were revealled clearly by weak beam technique. In HREM, not only Lomer and 60 degrees types of misfit dislocations were observed, but also two types of stacking faults were analysed. The residual strain was estimated by both methods.
Resumo:
We report the structural and optical characteristics of InAs quantum dots (QDs) grown on GaAs (311)A substrates. Atomic force microscopic result shows that QDs on (311)A surface exhibit a nonconventional, faceted, arrowhead-like shapes aligned in the [233] direction. The photoluminescence (PL) intensity, peak position and the full width at half maxinum (FWHM) are all closely related to the measurement temperature. The fast redshift of PL energy and monotonous decrease of linewidth with increasing temperature were observed and explained by carriers being thermally activated to the barrier produced by the wetting layer and then being retrapped and recombined in energetically lower-lying QDs states. This model explains our results well.
Resumo:
Variable temperature photoluminescence (PL) measurements for In0.3Ga0.7As(6 nm)/GaAs(34 nm) quantum dot superlattices with a period of 20 and an In0.3Ga0.7As(6 nm)/GaAs(34 nm) reference single quantum well have been conducted. It is found that the temperature dependence is different between the quantum dots and the reference single quantum well. The PL peak energy of the single quantum well decreases faster than that of the quantum dots with increasing temperature. The PL peak energy for the InGaAs/GaAs quantum dots closely follows the InAs band gap in the temperature range from 11 to 170 K, while the PL peak energy for the InGaAs/GaAs quantum well closely follows the GaAs band gap. In comparison with InAs/GaAs quantum dots, the InGaAs/GaAs quantum dots are more typical as a zero-dimensional system since the unusual PL results, which appear in the former, are not obvious for the latter. (C) 1999 American Institute of Physics. [S0021-8979(99)08615-6].
Resumo:
Photoluminescence (PL) investigation was carried out on GaInP/GaAs multiple quantum wells structures grown on (001) and (311) B surfaces of GaAs by gas source molecular beam epitaxy. Superlattice structures of GaAs/GaInP grown on (001) GaAs substrate were also studied in comparison. Deep-level luminescence was seen to dominate the PL spectra from the quantum wells and superlattice structures that were grown on (001) GaAs substrate. In contrast, superior optical properties were exhibited in the same structures grown on (311) B GaAs surfaces. The results suggested that GaAs/GaInP quantum well structures on (311) B oriented substrates could efficiently suppress the deep-level emissions, result in narrower PL peaks indicating smooth interfaces. (C) 1998 American Institute of Physics.
Resumo:
The quantum-confined Stark effect and the Franz-Keldysh oscillation of a single quantum well (SQW) GaAs/AlxGa1-xAs electrode were studied in non-aqueous hydroquinone + benzoquinone solution with electrolyte electroreflectance spectroscopy. By investigation of the relation of the quantum-confined Stark effect and the Franz-Keldysh oscillation with applied external bias, the interfacial behaviour of an SQW electrode was analysed. (C) 1997 Elsevier Science S.A.
Resumo:
Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200 C to 300 C under As flux (BEP) of about 1.0 x 10(-6) Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.
Resumo:
We investigate about controlling of photoluminescence (PL) wavelengths of InAs/GaAs self-assembled quantum dots (QDs) sandwiched with combination strained-buffer layer (CSBL) and combination strained-reducing layer (CSRL). The emission peak position of QDs is red-shifted to 1.37 mu m. The density of the QDs is increased to 1.17x10(10) cm(-2). It is indicated that optical properties of QDs could be improved by optimizing of the buffer and covering layers for the QDs. These results may provide a new way to further developing GaAs-based 1.3 mu m light sources.
Resumo:
Surface morphology evolution of strained InAs/GaAs(331)A films was systematically investigated in this paper. Under As-rich conditions, InAs elongated islands aligned along [1 (1) over bar0] are formed at a substrate temperature of 510 degrees C. We explained it as a result of the anisotropic diffusion of adatoms. Under In-rich conditions, striking change has occurred with respect to the surface morphology of the InAs layers. Instead of anisotropic InAs elongated islands, unique island-pit pairs randomly distributed on the whole surface were observed. Using cooperative nucleation mechanisms proposed by Jesson et al. [Phys. Rev. Lett. 77, 1330 (1996)], we interpret the resulting surface morphology evolution.
Resumo:
The nonradiative recombination effect on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by photoluminescence and time-resolved photoluminescence under various excitation intensities and temperatures. It is found that the PL decay dynamics strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual non-exponential behavior and show a convex shape. By introducing a new concept of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. In the cw PL measurement, a rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results further demonstrate that the non-radiative recombination process plays a very important role on the optical properties of GaInNAs/GaAs quantum wells.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.
Resumo:
GaSb films with AlSb/GaSb compound buffer layers were grown by molecular beam epitaxy on GaAs (001) substrates. The crystal quality and optical properties were studied by high resolution transition electron microscopy and low temperature photoluminescence spectra (PL), respectively. It was found that the AlSb/GaSb compound buffer layers can restrict the dislocations into GaSb epilayers. The intensity of PL spectra of GaSb layer becomes large with the increasing the periods of AlSb/GaSb superlattices, indicating that the optical quality of GaSb films is improved.