307 resultados para TENSILE
Resumo:
ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
HfO2薄膜是用电子束蒸发方法制备的,利用ZYGO干涉仪测量了基片镀膜前后曲率半径的变化,计算了薄膜应力。对样品进行了XRD测试,讨论了膜厚对薄膜残余应力的影响。结果发现不同厚度HfO2薄膜的残余应力均为张应力,应力值随薄膜厚度的增加而减小,当薄膜厚度达到一定值后,应力值趋于稳定。从微观结构变化对实验结果进行了分析,发现微结构演变引起的本征应力变化是引起薄膜残余应力改变的主要因素。
Resumo:
用电子束蒸发方法在BK7基底上沉积了HfO2/SiO2多层膜。研究了200℃到400℃的退火对残余应力的影响。结果表明退火前的薄膜残余应力为压应力,在200℃退火后发展为张应力,然后张应力值随着退火温度的升高而增大。在400℃退火后,由于张应力太大,薄膜表面出现了裂纹。同时,随着退火温度的升高,晶粒尺寸长大,晶面间距降低。残余应力的变化与结构的演变相对应。
Resumo:
TiO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on optical, mechanical and structural properties of TiO2 thin films were studied. The results showed that with the increase of oxygen partial pressure, the optical transmittance gradually increased, the transmittance edge gradually shifted to short wavelength, and the corresponding refractive index decreased. The residual stresses of all samples were tensile, and the value increased as oxygen partial pressure increasing, which corresponded to the evolutions of the packing densities. The structures of TiO2 thin films all were amorphous because deposition particles did not possess enough energy to crystallize. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12 mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x- ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress increases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.
Resumo:
This paper describes the preparation and the characterization Of Y2O3 stabilized ZrO2 thin films produced by electric-beam evaporation method. The optical properties, microstructure, surface morphology and the residual stress of the deposited films were investigated by optical spectroscopy, X-ray diffraction (XRD), scanning probe microscope and optical interferometer. It is shown that the optical transmission spectra of all the YSZ thin films are similar with those of ZrO2 thin film, possessing high transparency in the visible and near-infrared regions. The refractive index of the samples decreases with increasing of Y2O3 content. The crystalline structure of pure ZrO2 films is a mixture of tetragonal phase and monoclinic phase, however, Y2O3 stabilized ZrO2 thin films only exhibit the cubic phase independently of how much the added Y2O3 content is. The surface morphology spectrum indicates that all thin films present a crystalline columnar texture with columnar grains perpendicular to the substrate and with a predominantly open microporosity. The residual stress of films transforms tensile from compressive with the increasing Of Y2O3 molar content, which corresponds to the evolutions of the structure and packing densities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
采用自制掺摩尔分数12%的Y2O3的ZrO2混合颗粒料为原料,在不同的沉积温度下用电子束蒸发方法沉积氧化钇稳定氧化锆(YSZ)薄膜样品。利用ZYGOMarkⅢ-GPI数字波面干涉仪对氧化钇稳定氧化锆薄膜的残余应力进行了研究,讨论了沉积温度对残余应力的影响。实验结果表明:随沉积温度升高,氧化钇稳定氧化锆薄膜中残余应力状态由张应力变为压应力,且压应力值随着沉积温度升高而增大;用X射线衍射仪表征了不同沉积温度下氧化钇稳定氧化锆薄膜的微观结构,探讨了薄膜微观结构与其应力的对应关系,并对比了纯ZrO2薄膜表现出的应力状态。
Resumo:
Using effective-mass Hamiltonian model of semiconductors quantum well structures, we investigate the electronic structures of the Gamma-conduction and L-conduction subbands of GeSn/GeSiSn strained quantum well structure with an arbitrary composition. Our theoretical model suggests that the band structure could be widely modified to be type I, negative-gap or indirect-gap type II quantum well by changing the mole fraction of alpha-Sn and Si in the well and barrier layers, respectively. The optical gain spectrum in the type I quantum well system is calculated, taking into account the electrons leakage from the Gamma-valley to L-valley of the conduction band. We found that by increasing the mole fraction of alpha-Sn in the barrier layer and not in the well layer, an increase in the tensile strain effect can significantly enhance the transition probability, and a decrease in Si composition in the barrier layer, which lowers the band edge of Gamma-conduction subbands, also comes to a larger optical gain.
Resumo:
We report the growth of high quality and crack-free GaN film on Si (111) substrate using Al0.2Ga0.8N/AlN stacked interlayers. Compared with the previously used single AlN interlayer, the AlGaN/AlN stacked interlayers can more effectively reduce the tensile stress inside the GaN layer. The cross-sectional TEM image reveals the bending and annihilation of threading dislocations (TDs) in the overgrown GaN film which leads to a decrease of TD density.
Resumo:
We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.
Resumo:
Hexagonal GaN is grown on a Si(111) substrate with AlN as a buffer layer by gas source molecular beam epitaxy (GSMBE) with ammonia. The thickness of AlN buffer is changed from 9 to 72 nm. When the thickness of AlN buffer is 36 nm, the surface morphology and crystal quality of GaN is optimal. The in-situ reflection high energy electron diffraction (RHEED) reveals that the transition to a two-dimensional growth mode of AlN is the key to the quality of GaN. However, the thickness of AlN buffer is not so critical to the residual in-plane tensile stress in GaN grown on Si(111) by GSMBE for AlN thickness between 9 to 72 nm.
Resumo:
In a recent letter, Hsieh reported the growth of high-quality Ge epilayers with a SiGe buffer thickness of only 0.45 mu m, a surface root-mean-square roughness of less than 0.4 nm, and a threading dislocation of 7.6 x 10(6) cm(-2) on Si+ pre-ion-implantation Si substrate utilizing of strain relaxation enhancement by point defects and interface blocking of the dislocations. Our comment has focused on x-ray diffraction data shown in Fig. 3 of Ref. 1. We demonstrate that the strain in Ge epilayers is tensile, rather than compressive as misunderstood by the authors. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3003873]
Resumo:
This paper presents a study of the transformation of high-temperature AlN (HT-AlN) interlayer (IL) and its effect on the strain relaxation of Al0.25Ga0.75N/HT-AlN/GaN. The HT-AlN IL capped with Al0.25Ga0.75N transforms into AlGaN IL in which the Al composition increases with the HT-AlN IL thickness while the total Ga content keeps nearly constant. During the HT-AlN IL growth on GaN, the tensile stress is relieved through the formation of V trenches. The filling up of the V trenches by the subsequent Al0.25Ga0.75N growth is identified as the Ga source for the IL transformation, whose effect is very different from a direct growth of HT-AlGaN IL. The a-type dislocations generated during the advancement of V trenches and their filling up propagate into the Al0.25Ga0.75N overlayer. The a-type dislocation density increases dramatically with the IL thickness, which greatly enhances the strain relaxation of Al0.25Ga0.75N. (c) 2008 American Institute of Physics.
Resumo:
A 5.35-mu m-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) omega-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction theta - 2. scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.