194 resultados para ENERGY-LOSS SPECTROSCOPY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The (Ga,Mn,N) samples were grown by the implantation of low-energy Mn ions into GaN/Al2O3 substrate at different elevated substrate temperatures with mass-analyzed low-energy dual ion beam deposition system. Auger electron spectroscopy depth profile of samples grown at different substrate temperatures indicates that the Mn ions reach deeper in samples with higher substrate temperatures. Clear X-ray diffraction peak from (Ga,Mn)N is observed in samples grown at the higher substrate temperature. It indicates that under optimized substrate temperature and annealing conditions the solid solution (Ga,Mn)N phase in samples was formed with the same lattice structure as GaN and different lattice constant. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The (Ga,Mn,As) compounds were obtained by the implantation of Mn ions into semi-insulating GaAs substrate with mass-analyzed low energy dual ion beam deposition technique. Auger electron spectroscopy depth profile of a typical sample grown at the substrate temperature of 250degreesC showed that the Mn ions were successfully implanted into GaAs substrate with the implantation depth of 160 nm. X-ray diffraction was employed for the structural analyses of all samples. The experimental results were greatly affected by the substrate temperature. Ga5.2Mn was obtained in the sample grown at the substrate temperature of 250degreesC. Ga5.2Mn, Ga5Mn8 and Mn3Ga were obtained in the sample grown at the substrate temperature of 400degreesC. However, there is no new phase in the sample grown at the substrate temperature of 200degreesC. The sample grown at 400degreesC was annealed at 840degreesC. In this annealed sample Mn3Ga disappeared, Ga5Mn8 tended to disappear,Ga5.2Mn crystallized better and a new phase of Mn2As was generated. (C) 2002 Elsevier Science B,V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconducting manganese silicide, Mn27Si47 and Mn15Si26, were obtained using mass-analyzed low energy dual ion beam epitaxy technique, Auger electron spectroscopy depth profiles showed that some of the Mn ions were deposited on single-crystal silicon substrate and formed a 37.5 nm thick Mn film, and the other Mn ions were successfully implanted into the Si substrate with the implantation depth of 618 nm. Some samples were annealed in the atmosphere of flowing N-2 at 840 degreesC. X-ray diffraction measurements showed that the annealing was beneficial to the formation of Mn27Si47 and Mn15Si26 (C) 2001 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By mass-selected low energy ion beam deposition, amorphous carbon film was obtained. X-ray diffraction, Raman and Auger electron spectroscopy depth line shape measurements showed that such carbon films contained diamond particles. The main growth mechanism is subsurface implantation. Furthermore, it was indicated in a different way that ion bombardment played a decisive role in bias enhanced nucleation of chemical vapor deposition diamond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photocurrent spectroscopy has been used to study quantum-well intermixing in this paper. The cut-off wavelength of the photodiodes based on the implanted and annealed materials is significantly reduced, compared with that measured in annealed-only photodetectors. The bandgap of SiGe quantum well in implanted and annealed samples is blue-shifted by up to 97 meV, relative to that in annealed-only samples. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deep level transient spectroscopy technique has been used to determine the emission activation energies and capture barriers for electrons and holes in InAs self-assembled quantum dots embedded in GaAs. The ground electron and hole energies relative to their respective energy band edges of GaAs are 0.13 and 0.09 eV. Measurements show that the capture cross section of quantum dots is thermally activated. The capture barrier of quantum dots for electrons and holes are 0.30 and 0.26 eV, respectively. The results fit well with the results of photoluminescence spectroscopy measurements. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n-ZnO/p-Si heterojunction light-emitting diodes (LEDs) show weak defect-related electroluminescence (EL). In order to analyze the origin of the weak EL, the energy band alignment and interfacial microstructure of ZnO/Si heterojunction are investigated by x-ray photoelectron spectroscopy. The valence band offset (VBO) is determined to be 3.15 +/- 0.15 eV and conduction band offset is -0.90 +/- 0.15 eV, showing a type-II band alignment. The higher VBO means a high potential barrier for holes injected from Si into ZnO, and hence, charge carrier recombination takes place mainly on the Si side rather than the ZnO layer. It is also found that a 2.1 nm thick SiOx interfacial layer is formed at the ZnO/Si interface. The unavoidable SiOx interfacial layer provides to a large number of nonradiative centers at the ZnO/Si interface and gives rise to poor crystallinity in the ZnO films. The weak EL from the n-ZnO/p-Si LEDs can be ascribed to the high ZnO/Si VBO and existence of the SiOx interfacial layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the w-InN/h-BN heterojunction. We find that it is a type-II heterojunction with the VBO being -0.30 +/- A 0.09 eV and the corresponding conduction band offset (CBO) being 4.99 +/- A 0.09 eV. The accurate determination of VBO and CBO is important for designing the w-InN/h-BN-based electronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l(-1)) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l(-1) BTA and 2 g l(-1) SP showed optimum enhanced inhibition compared with their individual effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.