289 resultados para as-grown crystal
Resumo:
YAlO3 single crystal doped with Ce3+ at concentration 1% was grown by the temperature gradient technique. The as-grown crystal was pink. After H-2 annealing or air annealing at 1400degreesC for 20 h, the crystal was turned into colorless. We concluded there were two kinds of color centers in the as-grown crystal. One is F+ center attributed to absorption band peaking at about 530 nm, the other is O- center attributed to absorption band peaking at about 390 nm. This color centers model can be applied in explaining the experiment phenomena including the color changes, the absorption spectra changes, and the light yield changes of Ce:YAP crystals before and after annealing. (C) 2004 American Institute of Physics.
Resumo:
A V:YAG single crystal was grown by the temperature gradient technique (TGT) with graphite-heating elements. The as-grown crystal has different colorations of light green and yellow brown in different parts. Distribution of vanadium in three samples with different colorations was determined by inductively coupled plasma-mass spectrometry. From the absorption spectrum of the yellow-brown part with peaks at 370, 820 and 1320nm, we can deduce that the reducing atmosphere of carbon diffused from the heating elements can increase the concentration of tetrahedral V3+ ions and induce F color centers. All three samples exhibited light-green color after annealing in vacuum or H-2 atmospheres. In the vacuum annealing process, the V3+ ions in tetrahedral positions were enhanced through two methods: one method is the exchanging of octahedral V3+ and tetrahedral Al3+ ions in neighboring sites under thermal excitation, the other is that F color centers were thoroughly eliminated and the escaped free electrons could be captured by V ions with higher valance states to further improve the concentration of tetrahedral V3+ ions. Besides the two mechanisms, the H-2 annealing process greatly improved the V-tetra(3+) ions through the reduction effect of H-2. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A large and transparent Yb:FAP crystal with dimensions up to circle divide 30 mm x 85 mm has been grown by the Czochralski method. The preparation of the raw material has been investigated. X-ray power diffraction studies of Yb:FAP crystal confirm that the as-grown crystal is isostructural with the FAP crystal. The crystalline quality has been studied using X-ray rocking curve analysis. The segregation coefficient of Yb3+ in the Yb:FAP crystal has been also determined. Linear thermal expansion coefficients in [001] and [100] directions have been measured in the 30-800 degrees C temperature range. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
For the first time, a high optical quality Yb3+-doped lutetium pyrosilicate laser crystal Lu2Si2O7 (LPS) was grown by the Czochralski (Cz) method. The segregation coefficient of ytterbium ion in Yb:LPS crystal detected by the inductively coupled plasma atomic emission spectrometer (TCP-AES) method is equal to 0.847. X-ray powder diffraction result confirms the C2/m phase monoclinic space group of the grown crystal and the peaks corresponding to different phases were indexed. The absorption and fluorescence spectra, as well as fluorescence decay lifetime of Yb3+ ion in LPS have been investigated. The absorption and fluorescence cross-sections of the transitions F-2(7/2) <-> F-2(5/2) of Yb3+ ion in LPS crystal have been determined. The advantages of the Yb:LPS crystal including high crystal quality, quasi-four-level laser operating scheme, high absorption cross-sections (1.33 x 10(-2) cm(2)) and particularly broad emission bandwidth (similar to 62 nm) indicated that the Yb:LPS crystal seemed to be a promising candidate used as compact, efficient thin chip lasers when LD is pumped at 940 and 980 nm due to its low-symmetry monoclinic structure and single crystallographic site. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
gamma-LiAlO2 single crystal was successfully grown by Czochralski method. The crystal quality was characterized by X-ray rocking curve and chemical etching. The effects of air-annealing and vapor transport equilibration (VTE) on the crystal quality, etch pits and absorption spectra of LiAlO2 were also investigated in detail. The results show that the as-grown crystal has very high quality with the full width at half maximum (FWHM) of 17.7-22.6 arcsec. Dislocation density in the middle part of the crystal is as low as about 3.0 x 10(3) cm(-2). The VTE-treated slice has larger FWHM value, etch pits density and absorption coefficient as compared with those of untreated and air-annealed slices, which indicates that the crystal quality became inferior after VTE treatment. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this work, alpha-Al2O3:C, a highly sensitive thermoluminescence dosimetry crystal, was grown by the EFG method in which a graphite heating unit and shield acted as the carbon source during the growth process. The optical, luminescent properties and dosimetric characteristics of the crystal were investigated. The as-grown crystal shows a single glow peak at 536 K, which is associated with Cr3+ ions. After annealing in H-2 at 1673 K for 80 h, the crystal shows a single glow peak at 460 K and a blue emission band at 415 nm. The thermoluminescent response of the annealed crystal shows linear-sublinear-saturation characteristics in the dose range from 5 x 10(-6) to 100 Gy.
Resumo:
g-LiAlO2 single crystal is a promising substrate for GaN heteroepitaxy. In this paper, we present the growth of large-sized LiAlO2 crystal by modified Czochralski method. The crystal quality was characterized by high-resolution X-ray diffraction and chemical etching. The results show that the as-grown crystal has perfect quality with the full width at half maximum (FWHM) of 17.7-22.6 arcsec and etch pits density of (0.3-2.2) x 10(4) cm(-2) throughout the crystal boule. The bottom of the crystal boule shows the best quality. The optical transmission spectra from UV to IR exhibits that the crystal is transparent from 0.2 to 5.5 mu m and becomes completely absorbing around 6.7 mu m wavelength. The optical absorption edge in near UV region is about 191 nm.
Resumo:
In this work. an alpha-Al2O3:C crystal was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as the raw materials. The optical, optically stimulated luminescence (OSL) properties and dosimetric characteristics of as-grown crystal were investigated. As-grown alpha-Al2O3:C crystal shows strong absorption band at 205, 230 and 256 nm. Three-dimensional thermoluminescence (TL) emission spectrum of the crystal shows a single emission peak at similar to 415 nm. The OSL decay curve can be fitted to two exponentials, the faster component and the slower component. The OSL response of the crystal shows a linear-sublinear-saturation characteristic. As-grown alpha-Al2O3:C crystal shows excellent linearity in the dose range from 5 x 10(-6) to 50 Gy. For doses higher than the saturation dose (100 Gy). the OSL sensitivity decreases as the dose increases. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
A semi-insulating (SI) GaAs single crystal was recently grown in a retrievable satellite. The average etch pit density (EPD) of dislocations in the crystal revealed by molten KOH is 2.0 x 10(4) cm(-2), and the highest EPD is 3.1 x 10(4) cm(-2) This result indicates a quite good homogenity of the EPD which is much better than the ground-grown crystals. A similar better homogenity of the stoichiometry i.e., the [As]/([As] + [Ga]) ratio has been found in the space-grown SI-GaAs single crystal studied nondestructively using a new mapping method based upon X-ray Bond diffraction. The average stoichiometry in the space-grown crystal is 0.50007 with mean-square deviation of 6x10(-6), while the average stoichiometry in ground-grown SI-GaAs crystal is more than 0.50010. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A semi-insulating (SI) GaAs single crystal ingot was successfully grown in a recoverable satellite. The two-dimensional distribution of stoichiometry in space-grown SI-GaAs single crystal wafer was studied nondestructively based upon x-ray Band diffraction. The avenge stoichiometry in the space-grown crystal is 0.50007 with mean square deviation of 6 x 10(-6), and shows a better stoichiametric property than the ground-grown SI-GaAs. The average etch pit density (EPD) of dislocations in the crystal revealed by molten KOH is 2.0 x 10(4) cm(-2), and the highest EPD is 3.1 x 10(4) cm(-2). This result indicates that the structural properly of the crystal is quite good.
Resumo:
采用快速提拉法生长出了透明、完整的γ-LIAlO2晶体,但是晶体的高熔点和易挥发性限制了γ-LiAlO2晶体质量.采用气相传输平衡法(vapor transport equilibration technique,VTE)工艺对晶体改性,半高宽(FWHM)值从116.9arcsec降至44.2arcsec,继续升高VTE处理温度至1300℃,FWHM值反而升高至55.2arcsec.快速提拉法生长出来晶体,[100]方向和[001]方向的热膨胀系数分别为17.2398×10^-6/K,10.7664×10
Resumo:
用提拉法成功地生长了6mol%的高浓度掺铒铌酸锂晶体。测量了晶体的两个非偏振方向(X和Z)以及两个偏振方向(π和δ)的吸收光谱。高浓度掺铒铌酸锂晶体的吸收系数高,有利于提高泵浦效率。根据所测的吸收光谱用Judd-Ofelt理论拟合出了Er^3+离子的强度参数Ωλ。所得的均方差结果显示偏振拟合的误差要小于非偏振拟合。利用偏振吸收数据计算了各能级跃迁的自发辐射跃迁几率(AJJ’)、辐射寿命(τ)、荧光分支比(β)和积分发射截面(σp)等参数,对计算结果进行了讨论并与其他文献的报道结果进行了比较。
Resumo:
ZnO具有优良的综合性能使其成为极有前途的下一代光电材料,水热法是一种重要的生长ZnO晶体的方法。本文对水热法生长的面积约150mm^2的ZnO晶体进行了报道,研究了晶体不同方向的生长速度、形貌特征和光学性能。X射线摇摆曲线表明晶体的质量较好。对于光学性质的分析表明晶体生长时加入H2O2能显著提高晶体的质量。494nm附近的发光带可能与氧空位有关。520nm的发光可能与Na或者Si所形成的杂质能级跃迁有关。
Resumo:
采用提拉法成功生长了氮化镓和氧化锌基外延薄膜晶格匹配的ScAlMgO4单晶衬底材料,晶体呈透明白色,尺寸为Ф30mm×59mm,表面部分沿解理面有裂纹.粉末X射线衍射(XRD)分析表明经1400℃固相反应烧结的原料基本合成了ScAlMgO4多晶相.初步的偏光显微镜观察、晶体的粉末XRD表征、透过光谱和双晶摇摆测试表明晶体具有较好的光学性质和结晶质量.研究表明晶体本身的层状结构、较大的温度梯度和热应力的不均匀性是生长过程中引起晶体开裂的几个主要原因.
Resumo:
采用提拉法成功地生长了高质量的LiGaO2单晶体,生长过程中没有观察到挥发现象。通过四晶X射线衍射、化学腐蚀、光学显微、透过光谱以及原子力显微镜对晶体的质量进行了表征。结果表明:晶体中无包裹物及气泡,具有很高的质量,(001)面晶片的摇摆曲线半高宽仅为16.2arcsec,正交的(001)、(100)及(010)三个晶面具有不同的腐蚀形貌,其位错密度均低于10^4/cm^2;LiGaO2晶体的吸收边约为220nm;化学机械抛光后的晶片表面非常光滑,其均方根粗糙度仅为0.1nm(5×5μm^2)。