34 resultados para analysis of X-ray energy spectroscopy
Resumo:
Pure X-ray diffraction profiles have been analysed for polyamide 1010 and PA1O1O-BMI system by means of multipeak fitting resolution of X-ray diffraction. The methods of variance and fourth moment have been applied to determine the particle size and strain values for the paracrystalline materials. The results indicated that both variance and fourth moment of X-ray diffraction line profile yielded approximately the same values of the particle size and the strain. The particle sizes of (100) reflection have been found to decrease with increasing BMI content, whereas the strain values increased.
Resumo:
本文主要利用等离子体发射光谱元素含量分析( ICP)、亚细胞定位观察技术、以及电镜与能谱分析相结合技术,研究镧在绿豆(Phmeatus radiatus L.)幼苗不同部位组织细胞中的进入、运转、分配、含量和超微结构定位及与钙、铝关系。在全营养液加镧和缺钙营养液加镧处理的幼苗中,细胞超微结构受到不同程度影响,但其内未检测到镧。无离子水加镧处理幼苗,在低浓度、短时间条件下,镧进入、分布在质膜以外质外体系统中。高浓度镧处理时,镧沉淀能进入细胞内,并常看到堵塞胞间连丝,在质膜以外发现解体物质穿壁转移,并在壁中形成明暗相间的染色带。镧在植株中运输层层受阻,由根向叶其含量逐渐减少,而钙含量变化呈负相关,表明镧钙之间存在拮抗作用。 用焦锑酸钙的电镜细胞化学方法与能谱分析技术相结合,研究镧对细胞内Ca2+定位分布的影响,发现镧、钙沉淀颗粒的差异。在镧胁迫下,细胞质和核中Ca2+增多,液泡中Ca2+趋向于沿被膜分布,细胞结构受到破坏,说明镧胁迫下Ca2+水平增加与膜透性变化和Ca2+_CaM相关的许多生理生化过程有关。 初步探讨铝的毒害机理,发现铝也能进行超微结构定位观察,铝通过拮抗钙起作用,其作用机制与镧相似。
Resumo:
Thin SiO2 interlayer is the key to improving the electroluminescence characteristics of light emitting diodes based on ZnO heterojunctions, but little is known of the band offsets of SiO2/ZnO. In this letter, energy band alignment of SiO2/ZnO interface was determined by x-ray photoelectron spectroscopy. The valence band offset Delta E-V of SiO2/ZnO interface is determined to be 0.93 +/- 0.15 eV. According to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V Delta E-C=E-g(SiO2)-E-g(ZnO)-Delta E-V, and taking the room-temperature band-gaps of 9.0 and 3.37 eV for SiO2 and ZnO, respectively, a type-I band-energy alignment of SiO2/ZnO interface with a conduction band offset of 4.70 +/- 0.15 eV is found. The accurate determination of energy band alignment of SiO2/ZnO is helpful for designing of SiO2/ZnO hybrid devices and is also important for understanding their carrier transport properties. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3204028]
Resumo:
The relationship between the chemical displacement of the binding energy and the different chemical environment for 12 organic tin compounds was studied by means of X-ray photoelectron spectronscopy. The different substituents in the compounds have influence on the tin outer electron and Sn-O bond, which was discussed by Xray photoelectron spectroscopy and mass spectrum.
Resumo:
The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.
Resumo:
MgO is a promising gate dielectric and surface passivation film for GaN/AlGaN transistors, but little is known of the band offsets in the MgO/AlN system. X-ray photoelectron spectroscopy was used to measure the energy discontinuity in the valence band (Delta E-v) of MgO/AlN heterostructures. A value of Delta E-v=0.22 +/- 0.08 eV was obtained. Given the experimental band gap of 7.83 eV for MgO, a type-I heterojunction with a conduction band offset of similar to 1.45 eV is found. The accurate determination of the valence and conduction band offsets is important for use of III-N alloys based electronic devices.
Resumo:
The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the w-InN/h-BN heterojunction. We find that it is a type-II heterojunction with the VBO being -0.30 +/- A 0.09 eV and the corresponding conduction band offset (CBO) being 4.99 +/- A 0.09 eV. The accurate determination of VBO and CBO is important for designing the w-InN/h-BN-based electronic devices.
Resumo:
This work was supported by the 863 High Technology R&D Program of China (Grant Nos. 2007AA03Z402 and 2007AA03Z451), the Special Funds for Major State Basic Research Project (973 program) of China (Grant No. 2006CB604907), and the National Science Foundation of China (Grant Nos. 60506002 and 60776015). The authors express their appreciation to Dr. Tieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.
Resumo:
X-ray photoelectron spectroscopy and mass spectrometry have been used to study the ten alpha-Amino Acids. The chemical shiftss of N-1s electron binding energy have been explained by means of the difference in the hydrocarbon group of amino acids. The influence of the hydrocarbon group on NH2 has been disscussed using the XPS and MS results.
Resumo:
The valence band offset (VBO) of the InN/GaAs heterojunction is directly determined by x-ray photoelectron spectroscopy to be 0.94 +/- 0.23 eV. The conduction band offset is deduced from the known VBO value to be 1.66 +/- 0.23 eV, and a type-II band alignment forms at the InN/GaAs heterojunction. (C) 2008 American Institute of Physics.
Resumo:
The valence band offset (VBO) of MgO (111)/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 3.65 +/- 0.23 eV and the conduction band offset is deduced to be 0.92 +/- 0.23 eV, indicating that the heterojunction has a type- I band alignment. The accurate determination of the valence and conduction band offsets is important for the applications of MgO/SiC optoelectronic devices. (C) 2008 American Institute of Physics.
Resumo:
The valence band offset (VBO) of the wurtzite ZnO/4H-SiC heterojunction is directly determined to be 1.61 +/- 0.23 eV by x-ray photoelectron spectroscopy. The conduction band offset is deduced to be 1.50 +/- 0.23 eV from the known VBO value, which indicates a type-II band alignment for this heterojunction. The experimental VBO value is confirmed and in good agreement with the calculated value based on the transitive property of heterojunctions between ZnO, SiC, and GaN. (C) 2008 American Institute of Physics.
Resumo:
MgO may be a promising gate dielectric and surface passivation film for InN based devices and the valence band offset of MgO/InN heterojunction has been measured by x-ray photoelectron spectroscopy. The valence band offset is determined to be 1.59 +/- 0.23 eV. Given the experimental band gap of 7.83 for the MgO, a type-I heterojunction with a conduction band offset of 5.54 +/- 0.23 eV is found. The accurate determination of the valence and conduction band offsets is important for use of MgO/InN electronic devices. (c) 2008 American Institute of Physics.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset at the ZnO/GaAs heterojunction interface. The valence band offset is determined to be 2.39 +/- 0.23 eV. As a consequence, a type-II heterojunction with a conduction band offset of -0.44 +/- 0.23 eV is found. The directly obtained value is in good agreement with the result of theoretical calculations based on the interface-induced gap states and the chemical electronegativity theory. (c) 2008 American Institute of Physics.