119 resultados para Mems
Resumo:
An improved electromechanical model of the RF MEMS (radio frequency microelectromechanical systems) switches is introduced, in which the effects of intrinsic residual stress from fabrication processes, axial stress due to stretching of beam, and fringing field are taken into account. Four dimensionless numbers are derived from the governing equation of the developed model. A semi-analytical method is developed to calculate the behavior of the RF MEMS switches. Subsequently the influence of the material and geometry parameters on the behavior of the structure is analyzed and compared, and the corresponding analysis with the dimensionless numbers is conducted too. The quantitative relationship between the presented parameters and the critical pull-in voltage is obtained, and the relative importance of those parameters is given.
Resumo:
微机电系统(MEMS)技术的迅速崛起,推动了对其所用材料和结构的力学性能研究。简要介绍纳米硬度技术的发展展、理论模型和MTS公司的Nano Indenter XP系统的配置、测量原理及功能。并根据我们的一些研究结果,说明它在微机电系统中的应用。
Resumo:
A review is presented of the mechanics of microscale adhesion in microelectromechanical systems (MEMS). Some governing dimensionless numbers such as Tabor number, adhesion parameter and peel number for microscale elastic adhesion contact are discussed in detail. The peel number is modified for the elastic contact between a rough surface in contact with a smooth plane. Roughness ratio is introduced to characterize the relative importance of surface roughness for microscale adhesion contact, and three kinds of asperity height distributions are discussed: Gaussian, fractal, and exponential distributions. Both Gaussian and exponential distributions are found to be special cases of fractal distribution. Casimir force induced adhesion in MEMS, and adhesion of carbon nanotubes to a substrate are also discussed. Finally, microscale plastic adhesion contact theory is briefly reviewed, and it is found that the dimensionless number, plasticity index of various forms, can be expressed by the roughness ratio.
Resumo:
The close form solutions of deflections and curvatures for a film–substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film–substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film–substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film–substrate composite structure with the presence of gradient stress.
Resumo:
Residual stress and its gradient through the thickness are among the most important properties of as-deposited films. Recently, a new mechanism based on a revised Thomas-Fermi-Dirac (TFD) model was proposed for the origin of intrinsic stress in solid film
Resumo:
For the design of radio frequency micro-electro-mechanical systems (RF MEMS) switches, the reliability issue becomes increasingly important. This paper represents some failure phenomena of doubly supported capacitive RF MEMS switches that include observable destruction failure and directly measurable parameter degradation obtained from the actuating-voltage testing and scanning electron microscope (SEM) observation. The relevant failure modes as well as their failure mechanisms are identified.
Resumo:
With the recent rapid growth of Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches, there has developed an emergent requirement for more accurate theoretical models to predict their electromechanical behaviors. Many parameters exist in the analysis of the behavior of the switch, and it is inconvenient for further study. In this paper, an improved model is introduced, considering simultaneously axial stress, residual stress, and fringing-field effect of the fixed-fixed bridge structure. To avoid any unnecessary repetitive model tests and numerical simulation for RF MEMS switches, some dimensionless numbers are derived by making governing equation dimensionless. The electromechanical behavior of the fixed-fixed bridge structure of RF MEMS switches is totally determined by these dimensionless numbers.
Resumo:
磨损是材料和机械失效的主要原因之一。本文介绍了近年来材料磨损性能研究的进展,磨损的几种破坏机 制以及相应的磨损理论模型,并介绍了MEMS 中磨损研究的现状。
Resumo:
微电子机械系统(MEMS)技术的迅速崛起,推动了所用材料微尺度力学性能测试技术的发展.首先按作用方式将实验分成压痕/划痕、弯曲、拉伸、扭转四大类,系统介绍检测MEMS材料微尺度力学性能的微型试样、测试方法及其实验结果.测试材料主要有硅、氧化硅、氮化硅和一些金属.实验结果主要包括基本的力学性能参数如弹性模量、残余应力、屈服强度、断裂强度和疲劳强度等.最后,简要分析了未来的发展需求.
Resumo:
Stiction in microelectromechanical systems (MEMS) has been a major failure mode ever since the advent of surface micromachining in the 80s of the last century due to large surface-area-to-volume ratio. Even now when solutions to this problem are emerging, such as self-assembled monolayer (SAM) and other measures, stiction remains one of the most catastrophic failure modes in MEMS. A review is presented in this paper on stiction and anti-stiction in MEMS and nanoelectromechanical systems (NEMS). First, some new experimental observations of stiction in radio frequency (RF) MEMS switch and micromachined accelerometers are presented. Second, some criteria for stiction of microstructures in MEMS and NEMS due to surface forces (such as capillary, electrostatic, van der Waals, Casimir forces, etc.) are reviewed. The influence of surface roughness and environmental conditions (relative humidity and temperature) on stiction are also discussed. As hydrophobic films, the self-assembled monolayers (SAMs) turn out able to prevent release-related stiction effectively. The anti-stiction of SAMs in MEMS is reviewed in the last part.
Resumo:
纳米硬度计是一种能提供103mm-10-2mm尺度材料或结构微力学性能检测的先进仪器。采用纳米压痕技术,研究薄膜材料的弹性模量和硬度随压痕深度的变化规律以及薄膜厚度测量,微桥弯曲变形测量的方法。采用纳米划痕技术,研究薄膜的表面粗糙度、临界附着力和摩擦系数测量的方法。该仪器能广泛应用于MEMS的力学检测,并有望成为这一领域内的标准力学检测设备。
Resumo:
介绍了微电子和微电子机械系统(MEMS)中几种常用的变形和形貌测量方法以及相关的测量设备。其中相移云纹干涉技术用于微电子器件的面内位移测量,灵敏度可达到纳米量级。显微栅线投影技术用于MEMS的离面变形和形貌测量,灵敏度可达0.1微米。
Resumo:
Squeeze-film effects of perforated plates for small amplitude vibration are analyzed through modified Reynolds equation (MRE). The analytical analysis reckons in most important influential factors: compressibility of the air, border effects, and the resistance caused by vertical air flow passing through perforated holes. It is found that consideration of air compressibility is necessary for high operating frequency and small ratio of the plate width to the attenuation length. The analytical results presented in this paper agree with ANSYS simulation results better than that under the air incompressibility assumption. The analytical analysis can be used to estimate the squeeze-film effects causing damping and stiffness added to the system. Since the value of Reynolds number involved in this paper is low (< 1), inertial effects are neglected.
Resumo:
In the present research, the discrete dislocation theory is used to analyze the size effect phenomena for the MEMS devices undergoing micro-bending load. A consistent result with the experimental one in literature is obtained. In order to check the effectiveness to use the discrete dislocation theory in predicting the size effect, both the basic version theory and the updated one are adopted simultaneously. The normalized stress-strain relations of the material are obtained for different plate thickness or for different obstacle density. The prediction results are compared with experimental results.