104 resultados para HALL MEASUREMENT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gal(1-x)Mn(x)Sb epilayer was prepared on the n-type GaSb substrate by liquid phase epitaxy. The structure of the Gal(1-x)Mn(x)Sb epilayer was analyzed by double-crystal X-ray diffraction. From the difference of the lattice constant between the GaSb substrate and the Ga1-xMnxSb epilayer, the Mn content in the Ga1-xMnxSb epilayer were calculated as x = 0.016. The elemental composition of Ga1-xMnxSb epilayer was analyzed by energy dispersive spectrometer. The carrier concentration was obtained by Hall measurement. The hole concentration in the Ga1-xMnxSb epilayer is 4.06 x 10(19)cm(-3). It indicates that most of the Mn atoms in Ga1-xMnxSb take the site of Ga, and play a role of acceptors. The current-voltage curve of the Ga1-xMnxSb/GaSb heterostructure was measured, and the rectifying effect is obvious. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sheet carrier concentrations, conduction band profiles and amount of free carriers in the barriers have been determined by solving coupled Schrodinger and Poisson equation self-consistently for coherently grown Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/AlN/GaN structures on thick GaN. The Al0.3Ga0.7N/GaN heterojunction structures with and without 1 nm AlN interlayer have been grown by MOCVD on sapphire substrate, the physical properties for these two structures have been investigated by various instruments such as Hall measurement and X-ray diffraction. By comparison of the theoretical and experimental results, we demonstrate that the sheet carrier concentration and the electrons mobility would be improved by the introduction of an AlN interlayer for Al0.3Ga0.7N/GaN structure. Mechanisms for the increasing of the sheet carrier concentration and the electrons mobility will be discussed in this paper. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AlGaN/GaN heterostructure using unintentionally doped AlN/GaN superlattices (SLs) as barrier layer is grown on C-plane sapphire by metal organic vapor deposition (MOCVD). Compared with the conventional Si-doped structure, electrical property is improved. An average sheet resistance of 287.1 Omega/square and high resistance uniformity of 0.82% are obtained across the 2-inch epilayer wafer with an equivalent Al composition of 38%. Hall measurement shows that the mobility of two-dimensional electron gas (2DEG) is 1852 cm(2)/V s with a sheet carrier density of 1.2 x 10(13) cm(-2) at room temperature. The root mean square roughness (RMS) value is 0.159 nm with 5 x 5 mu m(2) scan area and the monolayer steps are clearly observed. The reason for the property improvement is discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beating patterns in longitudinal resistance caused by the symmetric and antisymmetric states were observed in a heavily doped InGaAs/InAlAs quantum well by using variable temperature Hall measurement. The energy gap of symmetric and antisymmetric states is estimated to be 4meV from the analysis of beating node positions. In addition, the temperature dependences of the subband electron mobility and concentration were also studied from the mobility spectrum and multicarrier fitting procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gal(1-x)Mn(x)Sb epilayer was prepared on the n-type GaSb substrate by liquid phase epitaxy. The structure of the Gal(1-x)Mn(x)Sb epilayer was analyzed by double-crystal X-ray diffraction. From the difference of the lattice constant between the GaSb substrate and the Ga1-xMnxSb epilayer, the Mn content in the Ga1-xMnxSb epilayer were calculated as x = 0.016. The elemental composition of Ga1-xMnxSb epilayer was analyzed by energy dispersive spectrometer. The carrier concentration was obtained by Hall measurement. The hole concentration in the Ga1-xMnxSb epilayer is 4.06 x 10(19)cm(-3). It indicates that most of the Mn atoms in Ga1-xMnxSb take the site of Ga, and play a role of acceptors. The current-voltage curve of the Ga1-xMnxSb/GaSb heterostructure was measured, and the rectifying effect is obvious. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal stability of InN in the growth environment in metalorganic chemical vapor deposition was systematically investigated in situ by laser reflectance system and ex situ by morphology characterization, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that InN can withstand isothermal annealing at temperature as high as 600 degrees C in NH3 ambient. While in N-2 atmosphere, it will decompose quickly to form In-droplets at least at the temperature around 500 degrees C, and the activation energy of InN decomposition was estimated to be 2.1 +/- 0.1 eV. Thermal stability of InN when annealing in NH3 ambient during temperature altering would be very sensitive to ramping rate and NH3 flow rate, and InN would sustain annealing process at small ramping rate and sufficient supply of reactive nitrogen radicals. Whereas In-droplets formation was found to be the most frequently encountered phenomenon concerning InN decomposition, annealing window for conditions free of In-droplets was worked out and possible reasons related are discussed. In addition, InN will decompose in a uniform way in the annealing window, and the decomposition rate was found to be in the range of 50 and 100 nm/h. Hall measurement shows that annealing treatment in such window will improve the electrical properties of InN. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnO thin films were grown by metal-organic chemical vapour deposition using methanol as oxidant. Rapid thermal annealing (RTA) was performed in an ambient of one atmosphere oxygen at 900 degrees C for 60 s. The RTA properties of the films have been characterized using scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, photoluminescence spectra and Hall measurement. The grains of the film were well coalesced and the surface became denser after RTA. The full-width at half maximum of rocking curves was only 496 arcsec. The ZnO films were also proved to have good optical quality. The Hall mobility increased to 43.2 cm(2) V-1 s(-1) while the electron concentration decreased to 6.6 x 10(16) cm(-3). It is found that methanol is a potential oxidant for ZnO growth and the quality of ZnO film can be improved substantially through RTA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaSb 1 mu m-thick layers were grown by molecular beam epitaxy on GaAs (001). The effects of the growth conditions on the crystalline quality, surface morphology, electrical properties and optical properties were studied by double crystalline x-ray diffraction, atomic force microscopy, Hall measurement and photoluminescence spectroscopy, respectively. It was found that the surface roughness and hole mobility are highly dependent on the antimony-to-gallium flux ratios and growth temperatures. The crystalline quality, electrical properties and optical properties of GaSb layers were also studied as functions of growth rate, and it was found that a suitably low growth rate is beneficial for the crystalline quality and electrical and optical properties. Better crystal quality GaSb layers with a minimum root mean square surface roughness of 0.1 nm and good optical properties were obtained at a growth rate of 0.25 mu m h(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mosaic structure in InN layers grown by metalorganic chemical vapor deposition at various temperatures has been investigated by X-ray diffraction (XRD). With a combination of Williamson-Hall measurement and fitting of twist angles, it was found that variation of growth temperature from 450 to 550 degrees C leads to the variation of the lateral coherence length, vertical coherence length, tilt and twist of mosaic blocks in InN films in a, respectively, monotonic way. In particular, mosaic tilt increases whereas mosaic twist decreases with elevating temperature. Atomic force microscopy shows the morphological difference of the InN nucleation layers grown at 450 and 550 degrees C. Different coalescence thickness and temperature-dependent in-plane rotation of InN nuclei are considered to account for the XRD results. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have grown MnxGe1-x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07 X 10(19) cm(-3) while the MnxGe1-x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel AlGaN/GaN/GaN/GaN double heterojunction high electron mobility transistors (DH-HEMTS) structure with an AlN interlayer on sapphire substrate has been grown by MOCVD. The structure featured a 6-10 nm In0.1Ga0.9N layer inserted between the GaN channel and GaN buffer. And wer also inserted one ultrathin. AlN interlayer into the Al/GaN/GaN interface, which significantly enhanced the mobility of two-dimensional electron gas (2DEG) existed in the GaN channel. AFM result of this structure shows a good surface morphology and a low dislocation density, with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu m x 5 mu m. Temperature dependent Hall measurement was performed on this sample, and a mobility as high as 1950 cm(2)/Vs at room temperature (RT) was obtained. The sheet carrier density was 9.89 x10(12) cm(2), and average sheet resistance of 327 Omega/sq was achieved. The mobility obtained in this paper is about 50% higher than other results of similar structures which have been reported. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wurtzite ZnO has many potential applications in optoelectronic devices, and the hydrogenated ZnO exhibits excellent photoelectronic properties compared to undoped ZnO; however, the structure of H-related defects is still unclear. In this article, the effects of hydrogen-plasma treatment and subsequent annealing on the electrical and optical properties of ZnO films were investigated by a combination of Hall measurement, Raman scattering, and photoluminescence. It is found that two types of hydrogen-related defects, namely, the interstitial hydrogen located at the bond-centered (H-BC) and the hydrogen trapped at a O vacancy (H-O), are responsible for the n-type background conductivity of ZnO films. Besides introducing two hydrogen-related donor states, the incorporated hydrogen passivates defects at grain boundaries. With increasing annealing temperatures, the unstable H-BC atoms gradually diffuse out of the ZnO films and part of them are converted into H-O, which gives rise to two anomalous Raman peaks at 275 and 510 cm(-1). These results help to clarify the relationship between the hydrogen-related defects in ZnO described in various studies and the free carriers that are produced by the introduction of hydrogen.