194 resultados para BAND OFFSETS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an all-electron band structure approach, we have systematically calculated the natural band offsets between all group IV, III-V, and II-VI semiconductor compounds, taking into account the deformation potential of the core states. This revised approach removes assumptions regarding the reference level volume deformation and offers a more reliable prediction of the "natural" unstrained offsets. Comparison is made to experimental work, where a noticeable improvement is found compared to previous methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MgO is a promising gate dielectric and surface passivation film for GaN/AlGaN transistors, but little is known of the band offsets in the MgO/AlN system. X-ray photoelectron spectroscopy was used to measure the energy discontinuity in the valence band (Delta E-v) of MgO/AlN heterostructures. A value of Delta E-v=0.22 +/- 0.08 eV was obtained. Given the experimental band gap of 7.83 eV for MgO, a type-I heterojunction with a conduction band offset of similar to 1.45 eV is found. The accurate determination of the valence and conduction band offsets is important for use of III-N alloys based electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the self-organized InAs quantum dots capped with thin and In0.2Al0.8As and In0.2Ga0.8As combination layers with a large ground and first excited energy separation emission at 1.35 mum at room temperature. Deep level transient spectroscopy is used to obtain quantitative information on emission activation energies and capture barriers for electrons and holes. For this system, the emission activation energies are larger than those for InAs/GaAs quantum dots. With the properties of wide energy separation and deep emission activation energies, self-organized InAs quantum dots capped with In0.2Al0.8As and In0.2Ga0.8As combination layers are one of the promising epitaxial structures of 1.3 mum quantum dot devices. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the w-InN/h-BN heterojunction. We find that it is a type-II heterojunction with the VBO being -0.30 +/- A 0.09 eV and the corresponding conduction band offset (CBO) being 4.99 +/- A 0.09 eV. The accurate determination of VBO and CBO is important for designing the w-InN/h-BN-based electronic devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The valence band offset (VBO) of MgO (111)/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 3.65 +/- 0.23 eV and the conduction band offset is deduced to be 0.92 +/- 0.23 eV, indicating that the heterojunction has a type- I band alignment. The accurate determination of the valence and conduction band offsets is important for the applications of MgO/SiC optoelectronic devices. (C) 2008 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MgO may be a promising gate dielectric and surface passivation film for InN based devices and the valence band offset of MgO/InN heterojunction has been measured by x-ray photoelectron spectroscopy. The valence band offset is determined to be 1.59 +/- 0.23 eV. Given the experimental band gap of 7.83 for the MgO, a type-I heterojunction with a conduction band offset of 5.54 +/- 0.23 eV is found. The accurate determination of the valence and conduction band offsets is important for use of MgO/InN electronic devices. (c) 2008 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thin SiO2 interlayer is the key to improving the electroluminescence characteristics of light emitting diodes based on ZnO heterojunctions, but little is known of the band offsets of SiO2/ZnO. In this letter, energy band alignment of SiO2/ZnO interface was determined by x-ray photoelectron spectroscopy. The valence band offset Delta E-V of SiO2/ZnO interface is determined to be 0.93 +/- 0.15 eV. According to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V Delta E-C=E-g(SiO2)-E-g(ZnO)-Delta E-V, and taking the room-temperature band-gaps of 9.0 and 3.37 eV for SiO2 and ZnO, respectively, a type-I band-energy alignment of SiO2/ZnO interface with a conduction band offset of 4.70 +/- 0.15 eV is found. The accurate determination of energy band alignment of SiO2/ZnO is helpful for designing of SiO2/ZnO hybrid devices and is also important for understanding their carrier transport properties. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3204028]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 +/- 0.19 eV, according to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V : Delta E-C = E-g(GaN) - E-g(Ge) - Delta E-V, and taking the room-temperature band-gaps as 3.4 and 0.67 eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6 +/- 0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The valence band offset (VBO) of MgO/TiO2 (rutile) heterojunction has been directly measured by Xray photoelectron spectroscopy. The VBO of the heterojunction is determined to be 1.6 +/- 0.3 eV and the conduction band offset (CBO) is deduced to be 3.2 +/- 0.3 eV, indicating that the heterojunction exhibits a type-I band alignment. These large values are sufficient for MgO to act as tunneling barriers in TiO2 based devices. The accurate determination of the valence and conduction band offsets is important for use of MgO as a buffer layer in TiO2 based field-effect transistors and dye-sensitized solar cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaAsSb/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy are studied by selectively-excited photoluminescence (SEPL) measurement. For the first time, we have simultaneously observed the PL, from both type I and type II transitions in GaAsSb/GaAs heterostructure in the SEPL. The two transitions exhibit different PL, behaviours under different excitation energy. As expected, the peak energy of type I emission remains constant in the whole excitation energy range we used, while type U transition shows a significant blue shift with increasing excitation energy. The observed blue shift is well explained in terms of electron-hole charge separation model at the interface. Time-resolved(TR) PL exhibits more type 11 characteristic of GaAsSb/GaAs QW. Moreover, the results of the excitation-power-dependent PL and TRPL provide more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum-well structures. By combining the experimental results with some simple calculations, we have obtained the strained and unstrained valence band offsets of Q(v) = 1.145 and Q(v)(0) = 0. 76 in our samples, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.