843 resultados para Wide gap semiconductors
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Transparent and conductive Zn-In-Sn-O (ZITO) amorphous thin films have been deposited at room temperature by the rf magnetron co-sputtering of ITO and ZnO targets. Co-sputtering gives the possibility to deposit multicomponent oxide thin films with different compositions by varying the power to one of the targets. In order to make ZITO films with different Zn content, a constant rf power of 50 W was used for the ITO target, where as the rf power to ZnO target was varied from 25 W to 150 W. The as deposited films showed an increase in Zn content ratio from 17 to 67 % as the power to ZnO target was increased from 25 to 150 W. The structural, electrical and optical properties of the as deposited films are reported. The films showed an average transmittance over 80% in the visible wavelength range. The electrical resistivity and optical band gap of the ZITO films were found to depend on the Zn content in the film. The ZITO films deposited at room temperature with lower Zn content ratios showed better optical transmission and electrical properties compared to ITO film.
Resumo:
En los últimos años el servicio de banda ancha móvil ha tenido una fuerte expansión en España, hasta alcanzar una penetración de más del 70 por 100 de la población a principios de 2014. Este crecimiento puede explicarse por las prestaciones que ofrecen las tecnologías de tercera y cuarta generación en los terminales móviles actuales, y por las continuas reducciones de precios del servicio. A pesar de ello, los precios en España son todavía más altos que la media europea. Este artículo explica el proceso de innovación tecnológica que ha permitido el surgimiento de la banda ancha móvil, y su lanzamiento en España. Se examinan las nuevas estrategias comerciales que utilizan los operadores, como el empaquetamiento de servicios y los planes convergentes que incluyen servicios fijos y móviles. Nuestro análisis destaca que la presencia de los operadores móviles virtuales y el empaquetamiento han favorecido la competencia y la disminución de precios. También mostramos cómo la convergencia tecnológica entre los servicios fijos y móviles promueve la restructuración y concentración del mercado.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS2 polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS2 geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included.
Resumo:
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors
Resumo:
The study of structures based on nonstoichiometric SnO(2-x) compounds, besides experimentally observed, is a challenging task taking into account their instabilities. In this paper, we report on single crystal Sn(3)O(4) nanobelts, which were successfully grown by a carbothermal evaporation process of SnO(2) powder in association with the well known vapor-solid mechanism. By combining the structural data and transport properties, the samples were investigated. The results showed a triclinic semiconductor structure with a fundamental gap of 2.9 eV. The semiconductor behavior was confirmed by the electron transport data, which pointed to the variable range hopping process as the main conduction mechanism, thus giving consistent support to the mechanisms underlying the observed semiconducting character.
Resumo:
Transparent conducting oxides (TCO) are widely used in technological applications ranging from photovoltaics to thin-film transparent field-effect transistors. In this work we report a first-principles investigation, based on density-functional theory, of the atomic and electronic properties of Ga(2)O(3)(ZnO)(6) (GZO(6)), which is a promising candidate to be used as host oxide for wide band gap TCO applications. We identify a low-energy configuration for the coherent distribution of the Ga and Zn atoms in the cation positions within the experimentally reported orthorhombic GZO(6) structure. Four Ga atoms are located in four-fold sites, while the remaining 12 Ga atoms in the unit cell form four shared Ga agglomerates (a motif of four atoms). The Zn atoms are distributed in the remaining cation sites with effective coordination numbers from 3.90 to 4.50. Furthermore, we identify the natural formation of twin-boundaries in GZO(6), which can explain the zigzag modulations observed experimentally by high-resolution transmission electron microscopy in GZO(n) (n=9). Due to the intrinsic twin-boundary formation, polarity inversion in the ZnO tetrahedrons is present which is facilitated by the formation of the Ga agglomerates. Our analysis shows that the formation of fourfold Ga sites and Ga agglomerates are stabilized by the electronic octet rule, while the distribution of Ga atoms and the formation of the twin-boundary help alleviate excess strain. Finally we identify that the electronic properties of GZO(6) are essentially determined by the electronic properties of ZnO, i.e., there are slight changes in the band gap and optical absorption properties.
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
This letter reports on a process to prepare nanostructured PbTiO3 (PT) at room temperature with photoluminescence (PL) emission in the visible range. This process is based on the high-energy mechanical milling of ultrafine PbTiO3 powder. The results suggest that high-energy mechanical milling modifies the particle's structure, resulting in localized states in an interfacial region between the crystalline PT and the amorphous PT. These localized states are believed to be responsible for the PL obtained with short milling times. When long milling times are employed, the amorphous phase that is formed causes PL behavior. An alternative method to process nanostructured wide-band-gap semiconductors with active optical properties such as PL is described in this letter. (C) 2001 American Institute of Physics.
Resumo:
Silicon carbide (SiC) is a promising material for electronics due to its hardness, and ability to carry high currents and high operating temperature. SiC films are currently deposited using chemical vapor deposition (CVD) at high temperatures 1500–1600 °C. However, there is a need to deposit SiC-based films on the surface of high aspect ratio features at low temperatures. One of the most precise thin film deposition techniques on high-aspect-ratio surfaces that operates at low temperatures is atomic layer deposition (ALD). However, there are currently no known methods for ALD of SiC. Herein, the authors present a first-principles thermodynamic analysis so as to screen different precursor combinations for SiC thin films. The authors do this by calculating the Gibbs energy ΔGΔG of the reaction using density functional theory and including the effects of pressure and temperature. This theoretical model was validated for existing chemical reactions in CVD of SiC at 1000 °C. The precursors disilane (Si2H6), silane (SiH4), or monochlorosilane (SiH3Cl) with ethyne (C2H2), carbontetrachloride (CCl4), or trichloromethane (CHCl3) were predicted to be the most promising for ALD of SiC at 400 °C.
Resumo:
We present a first-principles systematic study of the electronic structure of SiO(2) including the crystalline polymorphs alpha quartz and beta cristobalite, and different types of disorder leading to the amorphous phase. We start from calculations within density functional theory and proceed to more sophisticated quasiparticle calculations according to the GW scheme. Our results show that different origins of disorder have also different impact on atomic and electronic-density fluctuations, which affect the electronic structure and, in particular, the size of the mobility gap in each case.
Resumo:
Magnetoresistance measurements in p-type Pb(1-x)Eu(x)Te alloys, for x varying from 0% up to 5%, have been used to investigate localization and antilocalization effects. These are attributed to both the spin-orbit scattering and to the large Zeeman splitting present in these alloys due to the large values of the effective Lande g factor. The magnetoresistance curves are analyzed using the model of Fukuyama and Hoshino, which takes into account the spin-orbit and Zeeman scattering mechanisms. The spin-orbit scattering time is found to be independent of the temperature, while the inelastic-scattering time increases with decreasing temperature suggesting the electron-phonon interaction as the main scattering mechanism.
Resumo:
For esophageal reconstruction in newborns with esophageal atresia, esophageal reunion with an end-to-end anastomosis is the ideal procedure, although it may result in leaks and strictures due to tension on the suture line, mainly in cases with a wide gap between the ends. Circular myotomy (Livaditis' procedure) is the best method to elongate the proximal esophageal pouch and reduce anastomotic tension. This experimental investigation in dogs was undertaken to attempt to verify that circular myotomy decreases the anastomotic leak rate in newborns with wide gap esophageal atresia, and to analyze whether the technique promotes morphologic changes in the anastomotic scar. A pilot study demonstrated that it is necessary to resect more than 8 cm (40% of the total esophageal length) in order to obtain high leak rates. In the experimental project, such resection was performed in dogs divided into two groups (control group, anastomosis only, and experimental group, anastomosis plus circular myotomy in the proximal esophageal segment). The animals were killed in the 14th postoperative day, submitted to autopsy, and were evaluated as to the presence of leaks and strictures, as well as to the features (macroscopic and microscopic aspects) of the anastomosis. Leak rates were the same in both groups. Morphometric analysis revealed that in animals in the experimental group, the anastomotic scar was thinner than the control animals, and the isolated muscular manchette distal to the site of myotomy was replaced by fibrous tissue. Correspondingly, a decreased number of newly formed small vessels were noted in the experimental animals, compared to control animals. We concluded that circular myotomy does not decrease the incidence of anastomotic leaks, and it also promotes deleterious changes in anastomotic healing.