963 resultados para Ultraviolet photodetector
Resumo:
Heterostructures comprised of zinc oxide quantum dots (ZnO QDs) and graphene are presented for ultraviolet photodetectors (UV PD). Graphene-ZnO QDs-graphene (G-ZnO QDs-G) based PD demonstrated an excellent UV photoresponse with outstanding photoelastic characteristics when illuminated for several cycles with a periodicity 5 s. PD demonstrated faster detection ability with the response and recovery times of 0.29 s in response to much lower UV illumination. A direct variation in photoresponse is revealed with the bias voltage as well as UV illumination intensity. A drastic reduction in the dark current is noticed due to potential barrier formation between adjacent ZnO QDs and the recombination rate reduces by directly transferring photogenerated charge carriers from ZnO QDs to graphene for enhanced the charge mobility.
Resumo:
A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.
Resumo:
A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.
Resumo:
A new method to test the hole concentration of p-type GaN is proposed, which is carried out by analyzing the spectral response of p-n(+) structure GaN ultraviolet photodetector. It is shown that the spectral response of the photodetector changes considerably with reversed bias. It is found that the difference between photodetector's quantum efficiency at two wavelengths, i.e. 250 and 361 nm, varies remarkably with increasing reversed bias. According to the simulation calculation, the most characteristic change occurs at a reversed voltage under which the p-GaN layer starts to be completely depleted. Based on this effect the carrier concentration of p-GaN can be derived.
Resumo:
A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector is proposed. In comparision with conventional i-CaN/n(+)-GaN structure, an additional thin p-GaN cap layer is introduced on the i-GaN(n(-)-GaN) in the new structure. The simulation results showed that the additional layer makes the dark current to decrease in the photodetector due to the increase of the Schottky barrier height. The effects of thickness and carrier concentration of p-GaN layer on the dark current of the photodetector were also studied. It is suggested that the dark current of the new structure device could be better reduced by employing p-GaN with higher carrier concentration as the cap layer.
Resumo:
A new ultraviolet photodetector of employing p menus type GaN (p(-)-GaN) as the active layer is proposed. It is easy to obtain the p(-)-GaN layer with low carrier concentration. As a result, the depletion region can be increased and the quantum efficiency can be improved. The influence of some structure parameters on the performance of the new device is investigated. Through the simulation calculation, it is found that the quantum efficiency increases with the decrease of the barrier height between the metal electrode and the p(-)-GaN layer, and it is also found that the quantum efficiency can be improved by reducing the thickness of the p(-)-GaN layer. To fabricate the new photodetector with high performance, we should employ thin p(-)-GaN layer as the active layer and reduce the Schottky barrier height.
Resumo:
A new GaN-based ultraviolet photodetector with Schottky barrior structure is proposed. Comparied with the conventional i-GaN/n(+) -GaN structure, there is an additional thin n-AlGaN cap layer on the i-GaN in the new structure. The simulation result demonstrates that the new structure leads to an increased quantum efficiency in GaN photodetection, since the negative effect of surface states on the photodetector is reduced in the new structure. In addition, it is suggested that the performance of device with the new structure could be further improved by employing an even thinner AlGaN cap layer with higher carrier concentration.
Resumo:
We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n(-)-GaN/n(+)-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.
Resumo:
A metal-semiconductor-metal (MSM) ultraviolet photodetector has been fabricated using unintentionally doped n-GaN films grown on sapphire substrates. Its dark current, photocurrent under the illumination with lambda = 360 nm light, responsivity, and the dependence of responsivity on bias voltage were measured at room temperature. The dark current of the photodetector is 1.03 nA under 5 V bias, and is 15.3 nA under 10 V bias. A maximum responsivity of 0.166 A/W has been achieved under the illumination with lambda = 366 nm light and 15 V bias. It exhibits a typical sharp band-edge cutoff at the wavelength of 366 nm, and a high responsivity at the wavelength from 320 nm to 366 nm. Its responsivity under the illumination with lambda = 360 nm light increases when the bias voltage increases.
Resumo:
A Schottky-based metal-semiconductor-metal photodetector is fabricated on 1 mu m-thick, crack-free GaN on Si (I 11) substrate using an optimized AlxGal-xN/AlN complex buffer layer. It exhibits a high responsivity of 4600A/W at 366nm which may be due to both a crack-free sample and high internal gain. The relationship between responsivity and bias voltage is also investigated. The experiment results indicate that the responsivity increases with the bias voltage and shows a tendency to saturate. (c) 2007 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim.
Resumo:
The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector.
Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors
Resumo:
We investigated the influence of thickness of p-GaN layer on the performance of p-i-n structure GaN ultraviolet photodetector. Through the simulation calculation, it was found that both the quantum efficiency and dark current of device decrease when employing thicker p-GaN layer, while both the quantum efficiency and dark current increase with decreasing thickness of p-GaN layer. It is suggested that the Schottky contact junction between the metal and p-GaN may be responsible for the incompatible effect. We has to make a suitable choice of the thickness of p-GaN in the device design according to the application requirement.
Resumo:
Homoepitaxial growth of 4H-SiC p(+)/pi/n(-) multi-epilayer on n(+) substrate and in-situ doping of p(+) and pi-epilayer have been achieved in the LPCVD system with SiH4+C2H4+H-2. The surface morphologies, homogeneities and doping concentrations of the n(-)-single-epilayers and the p(+)/pi/n(-) multi-epilayers were investigated by Nomarski, AFM, Raman and SIMS, respectively. AFM and Raman investigation showed that both single- and,multi-epilayers have good surface morphologies and homogeneities, and the SIMS analyses indicated the boron concentration in p+ layer was at least 100 times higher than that in pi layer. The UV photodetectors fabricated on 4H-SiC p(+)/pi/n(-) multi-epilayers showed low dark current and high detectivity in the UV range.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
An interesting GaN photodetector structure, which can be used for characterizing the wavelength of incident ultraviolet light, is proposed. It is composed of two back-to-back integrated diodes, i.e. p-n and p-i-n GaN ultraviolet photodiodes with different spectral response. The wavelength of monochromatic ultraviolet light could be identified by measuring the photocurrent ratio value through a simple electronic circuit.