976 resultados para Tunnel junctions
Resumo:
Several scientific issues concerning the latest generation read heads for magnetic storage devices, based on CoFeB/MgO/CoFeBmagnetic tunnel junctions (MTJs) are known to be controversial, including such fundamental questions as to the behavior and the role of B in optimizing the physical properties of these devices. Quantitatively establishing the internal structures of several such devices with different annealing conditions using hard x-ray photoelectron spectroscopy, we resolve these controversies and establish that the B diffusion is controlled by the capping Ta layer, though Ta is physically separated from the layer with B by several nanometers. While explaining this unusual phenomenon, we also provide insight into why the tunneling magnetoresistance (TMR) is optimized at an intermediate annealing temperature, relating it to B diffusion, coupled with our studies based on x-ray diffraction and magnetic studies.
Resumo:
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.
Resumo:
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
We reported the all electronic demonstration of spin injection and detection in the trilayers with hybrid structure of CoFeB/GaAs/(Ga,Mn)As (metal/insulator semiconductor) by probing the magnetoresistance at low temperature from 1.8 to 30 K. Tunneling magnetoresistance (TMR) ratios of 3.8%, 4.7%, 2.9%, and 1.4% at 1.8, 10, 20, and 30 K, respectively, were observed. Bias dependence of both the junction resistance and TMR ratio was studied systematically. V-half at which TMR drops to half of its maximum is 6.3 mV, being much smaller compared to that observed in (Ga,Mn)As/ZnSe/Fe and (Ga,Mn)As/AlAs/MnAs hybrid structures, indicating lower Fermi energy of (Ga,Mn)As.
Resumo:
We employed organic heterojunction films as all-organic connecting units to fabricate tandem organic photovoltaic cells by continuous deposition. The all-organic connecting units with a better transparence and a lower sublimation temperature became an effective recombination center for electrons and holes photogenerated in front cell and back cell, respectively. Tunnel mechanism was proposed to explain the combination of photogenerated carrier.
Resumo:
Molecular tunnel junctions involve studying the behaviour of a single molecule sandwiched between metal leads. When a molecule makes contact with electrodes, it becomes open to the environment which can heavily influence its properties, such as electronegativity and electron transport. While the most common computational approaches remain to be single particle approximations, in this thesis it is shown that a more explicit treatment of electron interactions can be required. By studying an open atomic chain junction, it is found that including electron correlations corrects the strong lead-molecule interaction seen by the ΔSCF approximation, and has an impact on junction I − V properties. The need for an accurate description of electronegativity is highlighted by studying a correlated model of hexatriene-di-thiol with a systematically varied correlation parameter and comparing the results to various electronic structure treatments. The results indicating an overestimation of the band gap and underestimation of charge transfer in the Hartree-Fock regime is equivalent to not treating electron-electron correlations. While in the opposite limit, over-compensating for electron-electron interaction leads to underestimated band gap and too high an electron current as seen in DFT/LDA treatment. It is emphasised in this thesis that correcting electronegativity is equivalent to maximising the overlap of the approximate density matrix to the exact reduced density matrix found at the exact many-body solution. In this work, the complex absorbing potential (CAP) formalism which allows for the inclusion metal electrodes into explicit wavefunction many-body formalisms is further developed. The CAP methodology is applied to study the electron state lifetimes and shifts as the junction is made open.
Resumo:
Light emitted from metal/oxide/metal tunnel junctions can originate from the slow-mode surface plasmon polariton supported in the oxide interface region. The effective radiative decay of this mode is constrained by competition with heavy intrinsic damping and by the need to scatter from very small scale surface roughness; the latter requirement arises from the mode's low phase velocity and the usual momentum conservation condition in the scattering process. Computational analysis of conventional devices shows that the desirable goals of decreased intrinsic damping and increased phase velocity are influenced, in order of priority, by the thickness and dielectric function of the oxide layer, the type of metal chosen for each conducting electrode, and temperature. Realizable devices supporting an optimized slow-mode plasmon polariton are suggested. Essentially these consist of thin metal electrodes separated by a dielectric layer which acts as a very thin (a few nm) electron tunneling barrier but a relatively thick (several 10's of nm) optically lossless region. (C) 1995 American Institute of Physics.
Resumo:
The light output from nominally smooth Al-Ox-Au tunnel junctions is observed to be substantially independent of the deposition rate of the Au film electrode. Films deposited quickly (2 nm s-1) and those deposited slowly (0.16 nm s-1) have similar spectral dependences and intensities. (This is in contrast to roughened films where those deposited quickly give out less light, especially towards the blue end of the spectrum.) The behaviour can be interpreted in terms of the ratio l(ph)/l(em) where l(ph) and l(em) are the mean free paths of surface plasmons between external photon emissions and internal electromagnetic absorptions respectively. Once l(ph)/l(em) exceeds 100, as it does on smooth films, grain size has little further effect on the spectral shape of the light output. In fast-deposited films there are two compensating effects on the output intensity: grain boundary scattering decreases it and greater surface roughness increases it.
Resumo:
Visible light is emitted from the Au-air interface of Al-I-Au thin-film tunnel junctions (deposited over a thin layer of CaF2 on glass) as a result of the decay of surface plasmon polaritons (SPPs). We show the surface topography of such a Au film and relate its large-scale features to the outcoupling of fast SPP's to photons. The absence of short-scale roughness features is explained by thier disappearance through surface diffusion. To confirm this a controlled sequence of 5-nm, 20-ms scanning tunneling microscope (STM) W tip crashes has been used to produce indentations 3 nm deep with a lateral dimension of 5-7 nm on a Au crystal in air at room temperature. Four sequences of indentations were drawn in the form of a square box. Right from the start, feature decay is observed and over a period of 2 h a succession of images shows that the structure disappears into the background as a result of surface diffusion. The surface diffusion constant is estimated to be 10(-18) cm2 s-1. The lack of light output via slow mode SPPs is an inevitable consequence of surface annealing.