994 resultados para Temperature layers


Relevância:

70.00% 70.00%

Publicador:

Resumo:

High chromium content is responsible for the formation of a protective passive surface layer on austenitic stainless steels (ASS). Due to their larger amounts of chromium, superaustenitic stainless steels (SASS) can be chosen for applications with higher corrosion resistance requirements. However, both of them present low hardness and wear resistance that has limited their use for mechanical parts fabrication. Plasma nitriding is a very effective surface treatment for producing harder and wear resistant surface layers on these steel grades, without harming their corrosion resistance if low processing temperatures are employed. In this work UNS S31600 and UNS S31254 SASS samples were plasma nitrided in temperatures from 400 °C to 500 °C for 5 h with 80% H 2-20% N2 atmosphere at 600Pa. Nitrided layers were analyzed by optical (OM) and transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness testing. Observations made by optical microscopy showed that N-rich layers were uniform but their thicknesses increased with higher nitriding temperatures. XRD analyses showed that lower temperature layers are mainly composed by expanded austenite, a metastable nitrogen supersaturated phase with excellent corrosion and tribological properties. Samples nitrided at 400 °C produced a 5 μm thick expanded austenite layer. The nitrided layer reached 25 lm in specimens treated at 500 °C. There are indications that other phases are formed during higher temperature nitriding but XRD analysis was not able to determine that phases are iron and/or chromium nitrides, which are responsible for increasing hardness from 850 up to 1100 HV. In fact, observations made by TEM have indicated that formation of fine nitrides, virtually not identified by XRD technique, can begin at lower temperatures and their growth is affected by both thermodynamical and kinetics reasons. Copyright © 2012 by ASTM International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to gain insights into species-level behavioural responses to the physical environment, it is necessary to obtain information from various populations and at all times of year. We analysed the influences of physical environmental parameters on the mid-summer dive behaviour of Weddell seals (Leptonychotes weddellii) from a little-known population at Atka Bay, Antarctica. Dive depth distributions followed a typical bimodal pattern also exhibited by seals from other populations and seals targeted both shallow water layers of <50 m and depths near the seafloor. Increased stratification of temperature layers within the water column resulted in increased forage efforts by the seals through relatively high numbers of dives to the seafloor, as well as forage effort associated with shallow dives. We interpret these behavioural responses to be due to increased water temperature stratification resulting in the concentration of prey species in particular depth layers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk SiC for cost reduction and to better integrate the material with Si based electronic devices. In this paper, we present a complete in-situ study of the growth of epitaxial graphene on 3C SiC (111)/Si (111) substrates via high temperature annealing (ranging from 1125˚C to 1375˚C) in ultra high vacuum (UHV). The quality and number of graphene layers have been thoroughly investigated by using x-ray photoelectron spectroscopy (XPS), while the surface characterization have been studied by scanning tunnelling microscopy (STM). Ex-situ Raman spectroscopy measurements confirm our findings, which demonstrate the exponential dependence of the number of graphene layer from the annealing temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present paper the effects of temperature and high strain rate loading on the formation of various surface patterns in Ni-Al nano-layers are discussed. Effects of boundary conditions on the B2 -> BCT phase transformation in the nano-layer are also discussed. This study is aimed at developing several interesting patterned surface structures in Ni-Al nanolayer by controlling the phase transformation temperature and mechanical loading.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work, we report the growth of wurtzite InN epilayers on GaN/Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE). The growth parameters such as indium flux, substrate temperature and RF power affect the crystallographic and morphological properties of InN layers, which were evaluated using high resolution X-ray diffraction (HRXRD) analysis and atomic force microscopy (AFM). It is found that excess indium (In) concentrations and surface roughness were increased with increase in In flux and growth temperature. The intensity of HRXRD (0 0 0 2) peak, corresponding to c-axis orientation has been increased and full width at half maxima (FWHM) has decreased with increase in RF power. It was found that highly c-axis oriented InN epilayers can be grown at 450 degrees C growth temperature, 450 W RF power and 1.30 x 10(-7) mbar In beam equivalent pressure (BEP). The energy gap of InN layers grown by optimizing growth conditions was determined by photoluminescence and optical absorption measurement. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The strain evolution of the GaN layer grown on a high-temperature AlN interlayer with GaN template by metal organic chemical vapor deposition is investigated. It is found that the layer is initially under compressive strain and then gradually relaxes and transforms to under tensile strain with increasing film thickness. The result of the in situ stress analysis is confirmed by x-ray diffraction measurements. Transmission electron microscopy analysis shows that the inclination of edge and mixed threading dislocations rather than the reduction of dislocation density mainly accounts for such a strain evolution. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-quality In0.25Ga0.75As films were grown on low-temperature (LT) ultra-thin GaAs buffer layers formed on GaAs (0 0 1) substrate by molecular beam epitaxy. The epilayers were studied by atomic force microscopy (AFM), photo luminescence (PL) and double crystal X-ray diffraction (DCXRD), All the measurements indicated that LT thin buffer layer technique is a simple but powerful growth technique for heteroepitaxy. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gallium nitride (GaN)-based Schottky junctions were fabricated by RF-plasma-assisted molecular beam epitaxy (MBE). The GaN epitaxial layers were deposited on novel double buffer layers that consist of a conventional low-temperature buffer layer (LTBL) grown at 500 degreesC and an intermediate-temperature buffer layer (ITBL) deposited at 690 degreesC. Low-frequency excess noise and deep level transient Fourier spectroscopy (DLTFS) were measured from the devices. The results demonstrate a significant reduction in the density of deep levels in the devices fabricated with the GaN films grown with an ITBL. Compared to the control sample, which was grown with just a conventional LTBL, a three-order-of-magnitude reduction in the deep levels 0.4 eV below the conduction band minimum (Ec) is observed in the bulk of the thin films using DLTFS measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed characterisation study of GaN thin films grown by rf-plasma molecular beam epitaxy on intermediate-temperature buffer layers (ITBL) was carried out with Hall, photoluminescence (PL) and deep-level transient Fourier spectroscopy (DLTFS) techniques. The unique feature of our GaN thin films is that the GaN epitaxial layers are grown on top of a double layer that consists of an ITBL, which is grown at 690 degreesC, and a conventional low-temperature buffer layer deposited at 500 degreesC. It is observed that the electron mobility increases steadily with the thickness of the ITBL, which peaks at 377 cm(2)V(-1)S(-1) for an ITBL thickness of 800 nm. The PL also demonstrated systematic improvements with the thickness of the ITBL. The DLTFS results suggest a three-order-of-magnitude reduction in the deep level at E-c-0.40 eV in the device fabricated with the GaN films grown on an ITBL thickness of 1.25 mum in comparison with the control device without an ITBL. Our analyses indicate that the utilization of an ITBL in addition to the conventional low-temperature buffer layer leads to the relaxation of residual strain within the material, resulting in an improvement in the optoelectronic properties of the films. (C) 2002 Elsevier Science BN. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoluminescence of ZnSe, Zn0.84Mn0.16Se alloy, and ZnSe/Zn0.84Mn0.16Se superlattice (SL) have been measured in the temperature range from 10 to 300 K. It is found that the band gap of the ZnSe was smaller than that of the Zn0.84Mn0.16Se alloy at 10 K, but larger than that of the alloy at 300 K. Then the well and barrier layers of the ZnSe/Zn0.84Mn0.16Se SL would be expected to turn over at about 180 K. This type of turn over was observed in the SL sample. The turn over took place at 80 K, somewhat lower than the expected temperature. A calculation including the strain in the ZnSe/Zn0.84Mn0.16Se SL indicates that the heavy-hole bands begin crossing at 75 K, which agrees well with experimental results. [S0163-1829(99)13127-8].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.