980 resultados para Superconducting fault current limiter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage to power system apparatus and allowing more flexibility in power system design and operation. The device can also help avoid replacing circuit breakers whose capacity has been exceeded. Due to limitations in current YBCO thin film manufacturing processes, it is not easy to obtain one large thin film that satisfies the specifications for high voltage and large current applications. The combination of standardized thin films has merit to reduce costs and maintain device quality, and it is necessary to connect these thin films in different series and parallel configurations in order to meet these specifications. In this paper, the design of a resistive type SFCL using parallel-connected YBCO thin films is discussed, including the role of a parallel resistor and the influence of individual thin film characteristics, based on both theory and experimental results. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A superconducting fault current limiter (SFCL) in series with a downstream circuit breaker could provide a viable solution to controlling fault current levels in electrical distribution networks. In order to integrate the SFCL into power grids, we need a way to conveniently predict the performance of the SFCL in a given scenario. In this paper, short circuit analysis based on the electromagnetic transient program was used to investigate the operational behavior of the SFCL installed in an electrical distribution grid. System studies show that the SFCL can not only limit the fault current to an acceptable value, but also mitigate the voltage sag. The transient recovery voltage (TRV) could be remarkably damped and improved by the presence of the SFCL after the circuit breaker is opened to clear the fault. © 2007 British Crown Copyright.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-phase superconducting fault current limiter (SFCL) using a 0.9 m length of YBCO coated conductor (CC) tape was tested in 220 V-60 Hz line for fault current up to 1 kA, operating in 77 K. In this work are presented the IN experimental curves measured under DC and AC currents for the electrical characterization of the CC tape in order to design a low voltage current limiter. The experimental setup is described and the test results are presented for a unit conducting a steady nominal AC current of 50 A and also during the fault time (I to 5 cycles.) the performance of the CC-based SFCL providing the limiting resistance developed in the whole tape length after few milliseconds of the beginning of the fault was analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistive-type of superconducting fault current limiters (RSFCL) have been developed for medium voltage class aiming to operate at 1 MVA power capacity and short time recovery (< 2 s). A RSFCL in form of superconducting modular device was designed and constructed using 50 m-length of YBCO coated conductor tapes for operation under 1 kV / 1 kA and acting time of 0.1 s. In order to increase the acting time the RSFCL was combined with an air-core reactor in parallel to increase the fault limiting time up to 1 s. The tests determined the electrical and thermal characteristics of the combined resistive/ inductive protection unit. The combined fault current limiter reached a limiting current of 583 A, corresponding to a limiting factor of 3.3 times within an acting time of up to 1 s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50Hz. The quench currents extracted from the pulse measurements were in a range of 200-328A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 10 4Acm-2 at 25K in the self-field, based on the 1νVcm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. © IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to obtain a more compact Superconducting Fault Current limiter (SFCL), a special geometry of core and AC coil is required. This results in a unique magnetic flux pattern which differs from those associated with conventional round core arrangements. In this paper the magnetic flux density within a Fault Current Limiter (FCL) is described. Both experimental and analytical approaches are considered. A small scale prototype of an FCL was constructed in order to conduct the experiments. This prototype comprises a single phase. The analysis covers both the steady state and the short-circuit condition. Simulation results were obtained using commercial software based on the Finite Element Method (FEM). The magnetic flux saturating the cores, leakage magnetic flux giving rise to electromagnetic forces and leakage magnetic flux flowing in the enclosing tank are computed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YBaCuO-coated conductors offer great potential in terms of performance and cost-saving for superconducting fault current limiter (SFCL). A resistive SFCL based on coated conductors can be made from several tapes connected in parallel or in series. Ideally, the current and voltage are shared uniformly by the tapes when quench occurs. However, due to the non-uniformity of property of the tapes and the relative positions of the tapes, the currents and the voltages of the tapes are different. In this paper, a numerical model is developed to investigate the current and voltage sharing problem for the resistive SFCL. This model is able to simulate the dynamic response of YBCO tapes in normal and quench conditions. Firstly, four tapes with different Jc 's and n values in E-J power law are connected in parallel to carry the fault current. The model demonstrates how the currents are distributed among the four tapes. These four tapes are then connected in series to withstand the line voltage. In this case, the model investigates the voltage sharing between the tapes. Several factors that would affect the process of quenches are discussed including the field dependency of Jc, the magnetic coupling between the tapes and the relative positions of the tapes. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)