984 resultados para Semiconducting gallium


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dependence of the optical absorption edge on the deposition crucible temperature is used to investigate the electronic states in As-rich a-GaAs flash evaporated films. The Urbach energy parameter, determined from photothermal deflection spectroscopy (PDS), presents large correlated variations with crucible temperature. The optical and electrical results are consistent with the As under coordinated sites being the more important defect in the material. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of a Gilbert Cell Mixer and a low noise amplifier (LNA), using GaAs PHEMT technology is presented. The compatibility is shown for co-integration of both block on the same chip, to form a high performance 1.9 GHz receiver front-end. The designed LNA shows 9.23 dB gain and 2.01 dB noise figure (NF). The mixer is designed to operate at RF=1.9 GHz, LO=2.0 GHz and IF=100 MHz with a gain of 14.3 dB and single sideband noise figure (SSB NF) of 9.6 dB. The mixer presents a bandwith of 8 GHz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports changes in structural properties produced by thermal annealing of flash evaporated amorphous GaAs films using the micro-Raman scattering and the X-ray diffraction (XRD) techniques. Films of about 1 μm were grown on c-Si and glass substrates. The crystallization process is less effective for samples deposited on c-Si. This could be due to the ordering in the first layers of the film imposed by the oriented Si substrates. We propose that this ordering makes the growth of crystallites in these films more restrained than the growth occurring in the completely amorphous films on glass substrates. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ferromagnetic clusters were incorporated into GaAs samples by Mn implantation and subsequent annealing. The composition and structural properties of the Mn-based nanoclusters formed at the surface and buried into the GaAs sample were analyzed by x-ray and microscopic techniques. Our measurements indicate the presence of buried MnAs nanoclusters with a structural phase transition around 40 °C, in accord with the first-order magneto-structural phase transition of bulk MnAs. We discuss the structural behavior of these nanoclusters during their formation and phase transition, which is an important point for technological applications. © 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recently shown that spatial ordering for epitaxially grown InP dots can be obtained using the periodic stress field of compositional modulation on the InGaP buffer layer. The aim of this present work is to study the growth of films of GaP by Chemical Beam Epitaxy (CBE), with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED), on layers of unstressed and stressed GaAs. Complementary, we have studied the role of a buried InP dot array on GaP nucleation in order to obtain three-dimensional structures. In both cases, the topographical characteristics of the samples were investigated by Atomic Force Microscopy (AFM) in non-contact mode. Thus vertically-coupled quantum dots of different materials have been obtained keeping the in-place spatial ordering originated from the composition modulation. © 2006 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of tin dioxide (SnO2) are deposited by the sol-gel-dip-coating technique, along with GaAs layers, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, combining the emission from the rare-earth doped transparent oxide (Eu3+-doped SnO2 presents very efficient red emission) with a high mobility semiconductor. The advantage of this structure is the possibility of separation of the rare-earth emission centers from the electron scattering, leading to a strongly indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films, and the monochromatic light irradiation (266 nm) at low temperature of the heterojunction GaAs/SnO2:Eu leads to intense conductivity increase. Scanning electron microscopy (SEM) of the heterojunction cross section shows high adherence and good morphological quality of the interfaces substrate/SnO2 and SnO2/GaAs, even though the atomic force microscopy (AFM) image of the GaAs surface shows disordered particles, which increases with sample thickness. On the other hand, the good morphology of the SnO2:Eu surface, shown by AFM, assures the good electrical performance of the heterojunction. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels at the semiconductors interface, which may exhibit two-dimensional electron gas (2DEG) behavior. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two semiconducting hybrid gallium selenides, [Ga6Se9(C6H14N2)4][H2O] (1) and [C6H14N2][Ga4Se6(C6H14N2)2] (2), were prepared using a solvothermal method in the pres-ence of 1,2-diaminocyclohexane (1,2-DACH). Both materials consist of neutral inorganic layers, in which 1,2-DACH is co-valently bonded to gallium. In (1), the organic amine acts as a monodentate and a bidentate ligand, while in (2) bidentate and uncoordinated 1,2-DACH molecules coexist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and crystal structure of four gallium sulphide open frameworks, built from supertetrahedral clusters, are described. The structures of [C4NH12]6[Ga10S18][C4NH12]6[Ga10S18](1) and [C4NH12]12[Ga20S35.5(S3)0.5O](2) contain supertetrahedral T3 clusters, while in the isostructural compounds [C4NH12]16[Ga10S18M4Ga16S33][C4NH12]16[Ga10S18M4Ga16S33] (M=CoM=Co(3), Zn (4)), T3 and T4 clusters alternate. These materials exhibit three-dimensional frameworks, with topologies consisting of two interpenetrating diamond lattices, and contain over 50% of solvent accessible void space. UV–Vis diffuse reflectance measurements indicate that these compounds are semiconducting, with band gaps over the range 3.4–4.1 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of structures based on nonstoichiometric SnO(2-x) compounds, besides experimentally observed, is a challenging task taking into account their instabilities. In this paper, we report on single crystal Sn(3)O(4) nanobelts, which were successfully grown by a carbothermal evaporation process of SnO(2) powder in association with the well known vapor-solid mechanism. By combining the structural data and transport properties, the samples were investigated. The results showed a triclinic semiconductor structure with a fundamental gap of 2.9 eV. The semiconductor behavior was confirmed by the electron transport data, which pointed to the variable range hopping process as the main conduction mechanism, thus giving consistent support to the mechanisms underlying the observed semiconducting character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100 °C to very defective polycrystalline material. Lower-dose implants (down to 5 × 1013 cm – 2), which are not amorphous but defective after implantation, also anneal poorly up to 1100 °C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100 °C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. ©1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate some parameters of dental etching when irradiated with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser. One-hundred sound human third molars were selected and randomly distributed into ten groups (n = 10). The class V cavities of group 1 (control) were prepared with a bur and etched with 37% phosphoric acid, while groups G2 to G10, were prepared with laser (5 W, 88.46 J/cm(2), 90/70% air/water) and etched with the following powers: G3 and G4, 0.25 W; G5 and G6, 0.5 W; G7 and G8, 0.75 W; G9 and G10, 1 W. Group G2 received no laser etching. Prior to restoration, G2, G4, G6, G8 and G10 received acid etching. After restoration, all samples were submitted to a microleakage test. According to statistical analysis (Kruskal-Wallis and Dunn`s tests), G10 presented the lowest microleakage values (P < 0.05). The other groups showed no differences between them. Etching with Er,Cr:YSGG laser (1 W) followed by phosphoric acid was effective in reducing the microleakage of class V restorations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of different parameters of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on enamel mineral loss in a simulated caries model. Forty-five enamel samples obtained from third molar teeth (3 mmx 3 mm) were randomly divided into five groups (n = 9): G1-Er,Cr:YSGG laser at 0.25 W, 20 Hz, 2.8 J/cm(2); G2-Er,Cr:YSGG laser at 0.50 W, 20 Hz, 5.7 J/cm(2); G3-Er,Cr:YSGG laser at 0.75 W, 20 Hz, 8.5 J/cm(2); G4-sodium fluoride (NaF) dentifrice (positive control); G5-no treatment (negative control). After irradiation, the samples were submitted to 2 weeks of pH cycling. After the acid challenge, the samples were assessed by cross-sectional microhardness at different depths from the enamel surface. Analysis of variance (ANOVA) and Student-Newman-Keuls tests were performed (alpha = 5%). The percentage of lesion inhibition for each group was: G1 37%; G2 38%; G3 64%, and G4 50.5%. Regarding the relative mineral loss values (micrometers x volume percent), groups G1 (1,392 +/- 522) and G2 (1,292 +/- 657) did not differ significantly from each other, but both had higher values than group G3 (753 +/- 287); the groups irradiated with Er,Cr:YSGG laser did not differ from group G4. Although the findings of the study revealed that Er,Cr:YSGG laser irradiation at 8.5 J/cm(2) can be an alternative for the enhancement of the enamel`s resistance to acid, lower energy densities also produced a cariostatic potential comparable to the use of fluoride dentifrice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.