994 resultados para Rutherford backscattering spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The depth distribution of the strain-related tetragonal distortion e(T) in the GaN epilayer with low-temperature AlN interlayer (LT-AlN IL) on Si(111) substrate is investigated by Rutherford backscattering and channeling. The samples with the LT-AlN IL of 8 and 16 nm thickness are studied, which are also compared with the sample without the LT-AlN IL. For the sample with 16-nm-thick LT-AlN IL, it is found that there exists a step-down of e(T) of about 0.1% in the strain distribution. Meanwhile, the angular scan around the normal GaN <0001> axis shows a tilt difference about 0.01degrees between the two parts of GaN separated by the LT-AlN IL, which means that these two GaN layers are partially decoupled by the AlN interlayer. However, for the sample with 8-nm-thick LT-AlN IL, neither step-down of e(T) nor the decoupling phenomenon is found. The 0.01degrees decoupled angle in the sample with 16-nm-thick LT-AlN IL confirms the relaxation of the LT-AlN IL. Thus the step-down of e(T) should result from the compressive strain compensation brought by the relaxed AlN interlayer. It is concluded that the strain compensation effect will occur only when the thickness of the LT-AlN IL is beyond a critical thickness. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on structural characterization of AlGaN/GaN superlattices grown on sapphire. The superlattice formation is evidenced by high-resolution x-ray diffraction and transmission electron microscopy. The high resolution x-ray diffraction spectra exhibit a pattern of satellite peaks. The in-plane lattice constants of the superlattices indicate the coherent growth of the AlGaN layer onto GaN. The average At composition in the superlattices is determined to be 0.08 by Rutherford backscattering spectroscopy. The average parallel and perpendicular elastic strains for the SLs are determined to be (e(parallel to)) = +0.25% and (e(perpendicular to)) = -0.17%. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rutherford backscattering and channeling have been used to characterize the structure of a GaN layer grown on a Si(111) substrate. The results show that a 1.26 mum GaN epitaxial layer with a rather abrupt interface and a good crystalline quality (chi(min)=3.4%) can be grown on a Si(111) substrate. Using the channeling angular scan around an off-normal <1 (2) over bar 13> axis in the {10 (1) over bar0} plane of the GaN layer, the tetragonal distortion e(T), which is caused by the elastic strain in the epilayer, can be determined. Moreover, the depth dependence of the e(T) can be obtained using this technique. A fully relaxed (e(T)=0) GaN layer for a thickness <2.8 mum is expected. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different amounts of Ru were implanted into thermally evaporated WO3 thin films by ion implantation. The films were subsequently annealed at 600oC for 2 hours in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at%. The un-implanted WO3 films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman spectroscopy two peaks at 408 and 451 cm-1 (in addition to the typical vibrational peaks of the monoclinic WO3 phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-Ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d5/2 at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO2 and NO with higher sensor response to NO2. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO3 films with sufficient film porosity and film thickness can be beneficial for NO2 sensing at temperatures in the range of 250°C to 350°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient and a lower optical bandgap (∼2.0 eV) in comparison with that of PECVD samples, due to the lower density of Si-Si bonds and to the presence of nitrogen in PECVD materials. By increasing the Si content a reduction in the optical bandgap has been recorded, pointing out the role of Si-Si bonds density in the absorption process in small amorphous Si QDs. Both the photon absorption probability and energy threshold in amorphous Si QDs are higher than in bulk amorphous Si, evidencing a quantum confinement effect. For temperatures higher than 900 °C both the materials show an increase in the optical bandgap due to the amorphous-crystalline transition of the Si QDs. Fixed the SRO stoichiometry, no difference in the optical bandgap trend of multilayer or single layer structures is evidenced. These data can be profitably used to better implement Si QDs for future PV technologies. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stoichiometric Er silicate thin films, monosilicate (Er2SiO 5) and disilicate (Er2Si2O7), have been grown on c-Si substrates by rf magnetron sputtering. The influence of annealing temperature in the range 1000-1200 °C in oxidizing ambient (O 2) on the structural and optical properties has been studied. In spite of the known reactivity of rare earth silicates towards silicon, Rutherford backscattering spectrometry shows that undesired chemical reactions between the film and the substrate can be strongly limited by using rapid thermal treatments. Monosilicate and disilicate films crystallize at 1100 and 1200 °C, respectively, as shown by x-ray diffraction analysis; the crystalline structures have been identified in both cases. Moreover, photoluminescence (PL) measurements have demonstrated that the highest PL intensity is obtained for Er2Si2O7 film annealed at 1200 °C. In fact, this treatment allows us to reduce the defect density in the film, in particular by saturating oxygen vacancies, as also confirmed by the increase of the lifetime of the PL signal. © 2008 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is demonstrated to be effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks by inserting InAlGaN interlayers during the growth of GaN upon Si (1 1 1) substrate. Compared with GaN film without quaternary interlayer, GaN layer grown on InAlGaN compliant layers shows a five times brighter integrated PL intensity and a (0 0 0 2) High-resolution X-ray diffraction (HRXRD) curve width of 18 arcmin. Its chi(min), derived from Rutherford backscattering spectrometry (RBS), is about 2.0%, which means that the crystalline quality of this layer is very good. Quaternary InAlGaN layers, which are used as buffer layers firstly, can play a compliant role to endure the large mismatch-induced stress and reduce cracks during the growth of GaN epitaxy. The mechanisms leading to crack density reduction are investigated and results show that the phase immiscibility and the weak In-N bond make interlayer to offer tenability in the lattice parameters and release the thermal stress. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si1-xCx:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si1-xCx:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si1-xCx:H films. One pin structure was prepared by using the a-Si1-xCx:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crack-free In0.08Al0.25Ga0.67N quaternary films, with and without thick (> 1.5 mum) high-temperature-GaN (HTGaN) interlayer, have been grown on Si(1 1 1) substrates by a low-pressure metalorganic chemical vapor deposition (MOCVD) system. Mole fractions of In and Al in quaternary alloy layers are determined by Energy dispersive spectroscopy (EDS) and Rutherford backscattering spectrometry (RBS), which are recorded as similar to8% and similar to25-27%, respectively. High-resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RT-PL) results evidence the film's single crystal structure and the existence of local In- and/or Al-rich regions. Compared with GaN film grwon on Si(1 1 1) substrate, no crack is observed in the quaternary ones. Two explanations are proposed. First, mismatch-induced strain is relaxed significantly due to gradual changes of In concentration. Second, the weak In-N bond is likely to break when the sample is cooled down to the room temperature, which is expected to favor the releasing of thermal stress. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of Si and Mg doping on the crystalline quality and In distribution in the InGaN films were studied by atomic force microscope (AFM), triple crystal X-ray diffraction (TCXRD) and Rutherford backscattering spectrometry (RBS). The undoped, Si-doped and Mg-doped InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) on (0 0 0 1) sapphire substrates. The electronic concentration in the Si-doped InGaN is about 2 x 10(19) cm(-3). It is found that the crystalline quality and In distribution in InGaN is slightly affected by the Si doping. In the Mg doped-case, the hole concentration is about 4 x 10(18) cm(-3) after annealing treatment. The surface morphology and crystalline quality of the Mg-doped InGaN are deteriorated significantly compared with the undoped InGaN. The growth rate of Mg-doped InGaN is higher than the undoped InGaN. Mg doping enhances the In incorporation in the InGaN alloy. The increase in In composition in the growth direction is more severe than the undoped InGaN. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution and temperature dependence of the Schottky barrier heights of Pt contacts on n-GaN epilayer at various annealing temperatures were investigated extensively by Rutherford backscattering spectrometry, x-ray diffraction measurements, Auger electron spectroscopy, scanning electron microscopy and current-voltage measurements. The temperature dependence of the Schottky barrier heights may be attributed to changes of surface morphology of Pt films on the surface and variation of nonstoichiometric defects at the interface vicinity. Experimental results indicated the degradation of Pt contacts on n-GaN above 600 degreesC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ge layer with a pitting surface can be obtained when the growth temperature is lowered to 290 degrees C. On the low temperature Ge buffer layer with pits, high quality Ge layer was grown at 600 degrees C with a threading dislocation density of similar to 1x10(5)cm(-2). According to channeling and random Rutherford backscattering spectrometry spectra, a chi(min) value of 10% and 3.9% was found, respectively, at the Ge/Si interface and immediately under the surface peak. The root-mean-square surface roughness of Ge film was 0.33nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ni/SiO2 interface were irradiated at room temperature with 308 MeV Xe ions to 1×1012,5×1012 Xe/cm2 and 853 MeV Pb ions to 5×1011 Pb/cm2,respectively.These samples were analyzed using Rutherford Backscattering Spectrometry(RBS) and X-ray diffraction spectroscopy(XRD),from which the intermixing and phase change were investigated.The obtained results show that both Xe-and Pb-ions could induce diffusion of Ni atoms to SiO2 substrates and result in intermixing of Ni with SiO2.Furthermore,1.0×1012 Xe/cm2 irradiat...中文摘要:在室温下用308 MeV的Xe离子和853 MeV的Pb离子辐照Ni/SiO2样品,用卢瑟福背散射和X射线衍射技术对样品进行了分析。通过分析Ni/SiO2样品中元素成分分布和结构随离子辐照剂量和电子能损的变化,探索了离子辐照在Ni/SiO2样品中引起的界面原子混合与结构相变现象。实验结果显示,Xe和Pb离子辐照均能引起明显的Ni原子向SiO2基体的扩散并导致界面附近Ni,Si和O原子的混合。实验观测到低剂量Xe离子辐照可产生NiSi2相,而高剂量Xe离子辐照则导致了Ni3Si和NiO相的形成。根据热峰模型,Ni原子的扩散和新相的形成可能由沿离子入射路径强电子激发引起的瞬间热峰过程驱动。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystals of 6H-SiC were implanted at 600 K with 100 key He ions to three successively fluences and subsequently annealed at different temperatures ranging from 873 to 1473 K in vacuum. The recovery of lattice damage was investigated by different techniques including Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy and Fourier transform infrared spectroscopy. All three techniques showed that the damage induced by helium ion implantation in the lattice is closely related to the fluence. Rutherford backscattering spectrometry/channeling data on high temperature implantations suggest that for a fluence of 3 x 10(16) He+/cm(2), extended defects are created by thermal annealing to 1473 K. Apart from a well-known intensity decrease of scattering peaks in Raman spectroscopy it was found that the absorbance peak in Fourier transform infrared spectroscopy due to the stretching vibration of Si-C bond shifted to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with increasing annealing temperature. These phenomena are attributed to different lattice damage behavior induced by the hot implantation process, in which simultaneous recovery was prevailing. (C) 2010 Elsevier B.V. All rights reserved.