937 resultados para PALLADIUM(II)-CATALYZED OXIDATION
Resumo:
A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2-alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.
Resumo:
The development in the oxidation of olefins to ketones catalyzed by palladium compounds was reviewed. Some improved methods for the oxidation of olefins catalyzed by Wacker-type catalyst systems are also summarized. For this reaction, some new catalyst systems and the reaction mechanism are described. Emphasis has been given to the applications of Pd(I)/HPA(heteropoly acid), Pd(I)/FePc (iron phthalocyanine), Pd (I)/HQ (hydroquinone)/FePc, Pd (I)/HQ/HPA, Pd (I)/CuSO4/HPA catalyst systems in the oxidation of olefins to ketones; the application of Pd(I)/LCoNO2, PdCl2 (MeCN)(2)/CuCl, Pd(OAc)(2)/ pyridine, fluorous biphasic catalyst systems in the oxidation of olefins to ketones is also surveyed.
Resumo:
A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.
Resumo:
A simple catalyst system composed of Pd(OAc)2, phosphomolybdic acid and tetrabutylammonium acetate oxidises a range of alcohols efficiently, with turnover numbers (TONs) of up to 10 000.
Resumo:
Ligated Pd(II) complexes have been studied for the catalytic oxidation of terminal olefins to their corresponding methyl ketones. The method uses aqueous hydrogen peroxide as the terminal oxidant; a sustainable and readily accessible oxidant. The choice of ligand, counterion and solvent all have a significant effect on catalytic performance and we were able to develop systems which perform well for these challenging oxidations.
Resumo:
Continuous slurry reactor runs of two to four weeks duration were carried out for catalyzed air oxidation of thiosalts under a variety of conditions using poly (4-vinylpyridine) - Cu (II) and quaternized poly (4-vinylpyridine) - Cu (II) catalysts. Results obtained indicate that these catalysts have high activity and relatively long-term catalyst stability for thiosalt waste streams of < 1000 ppm thiosalt level. Using 2% (w/w) slurries of the poly (4-vinylpyridine) Cu (II) catalyst, effective oxidation of 700 ppm S2O32− influent to an effluent of < 100 ppm total thio-salts can be carried out continuously for at least one month when operating at 20 to 30°C with solution flow rates of$˜1l/h and aeration of 1300 XXX/h using a two-stage reactor system comprised of 12 l reactors. At higher thiosalt influent levels (i.e. > 1600 ppm) increased reaction temperatures enable depletion to < 100 ppm thiosalt effluent levels for up to one week of continuous operation. The catalysts deactivate much more readily at these higher influent levels as a result of greater copper losses and appreciable adsorption of S2O32− and S4O62−. The behaviour of continuous slurry reactors employed in the experimental studies, by use of batch reaction data for the poly (4-vinylpyridine) Cu (II) catalyzed oxidation of thiosalts, can be modelled successfully. Quaternized poly (4-vinylpyridine) Cu (II) catalyst has good long-term stability and copper losses are very low. The poly (4-vinylpyridine) Cu (II) catalyst, however, is susceptible to appreciable oxidation of the polymer matrix on long-term usage. This oxidation of the polymer matrix results in a substantial loss in the activity of the regenerated catalyst.
Resumo:
A new colorimetric probe has been developed for the detection and estimation of Pd-II at sub-nanomolar concentrations. The probe consisted of rhodamine (signaling unit), which was linked with a bis-picolyl moiety (binding site) through a phenyl ring. Pd-II induced opening of the spirolactam ring of the probe with the generation of a prominent pink color. The excellent selectivity of the probe towards Pd-II over Pd-0 or Rh-II ensured its potential utility for the detection of residual palladium contamination in pharma-ceutical drugs and in Pd-catalyzed reactions. The probe showed a ``turn-on'' (bright yellow) fluorescence upon the addition of Pd-II, which made it suitable for the detection of Pd contaminants in mammalian cells.
Resumo:
Palladium has a significant track record as a catalyst for a range of oxidation reactions and it has been explored for the selective oxidation of alcohols for many years. This chapter focuses on the two main types of aerobic Pd catalysts: heterogeneous and ligand-modulated systems. In the case of heterogeneous systems, the mechanistic understanding of these systems and the use of in situ and operando techniques to obtain this knowledge are discussed. The current state-of-the-art is also summarized in terms of catalytic performance and substrate scope for heterogeneous Pd-based catalysts. In terms of ligand-modulated systems, leading examples of molecular Pd(ii) catalysts which undergo direct O2 coupled turnover are highlighted. The catalyst performance for such catalysts is exemplified and mechanistic understanding for these molecular systems is discussed.
Resumo:
The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Reaction between PdCl2 and 1-alkyl-2-(arylazo)imidazole (RaaiR') or 1-alkyl-2-(naphthyl-alpha/beta-azo)imidazole (alpha/beta-NaiR') under reflux in ethanol has isolated complexes of compositions Pd(RaaiR')(2)Cl-2 (5, 6) and Pd(alpha/beta-NaiR')(2)Cl-2 (7, 8). The X-ray structure determination of one of the molecules, Pd(alpha-NaiBz)(2)Cl-2 (7c), has reported a trans-PdCl2 configuration, and alpha-NaiBz acts as monodentate N(imidazole) donor ligand. The spectral (IR, UV-vis, H-1 NMR) data support the structure. UV light irradiation (light source: Perkin-Elmer LS 55 spectrofluorimeter, Xenon discharge lamp, lambda = 360-396 nm) in a MeCN solution of the complexes shows E-to-Z isomerization of the coordinated azoimidazole unit. The reverse transformation, Z-to-E, is very slow with visible light irradiation. Quantum yields (phi(E-Z)) of E-to-Z isomerization are calculated, and phi is lower than that of the free ligand but comparable with those of Cd(II) and Hg(II) complexes of the same ligand. The Z-to-E isomerization is a thermally induced process. The activation energy (E-a) of Z-to-E isomerization is calculated by controlled-temperature experimentation. cis-Pd(azoimidazole)Cl-2 complexes (azomidazole acts as N(imidazole) and N(azo) Chelating ligand) do not respond upon light irradiation, which supports the idea that the presence of noncoordinated azo-N to make free azo (-N=N-) function is important to reveal photochromic activity. DFT calculation of Pd(alpha-NaiBz)(2)Cl-2 (7c) has suggested that the HOMO of the molecule is constituted of Pd (32%) and Cl (66%), and hence photo excitation may use the energy of Pd and Cl instead of that of the photofunctional -N=N-Ar motif; thus, the rate of photoisomerization and quantum yield decrease versus the free ligand values.
Resumo:
We report a detailed and full computational investigation on the hydrovinylation reaction of styrene with the Ni(II)-phospholane catalytic system, which was originally presumed to proceed through a cationic mechanism involving a nickel hydride intermediate. The following general features emerge from this study on a specific catalyst complex that was found to give quantitative yield and moderate selectivity: (a) the activation barrier for the initiation (18.8 kcal/mol) is higher than that for the reaction due to a low-lying square-planar pentenyl chelate intermediate originating from a Ni(II)-allyl catalyst precursor. Consequently there is an induction period for the catalysis; (b) the exit of product from the catalyst is via a β-H-transfer step instead of the usual β-H elimination pathway, which has a very high activation energy due to a trans effect of the phospholane ligand; (c) the turnover-limiting and enantio- determining transition state is also the β-H-transfer; (d) because of the absence of a hydride intermediate, the unwanted isomerization of the product is prevented; (e) since the enantio-discrimination is decided at the H-transfer stage itself, the configuration of the product in a catalytic cycle influences the enantioselectivity in the subsequent cycle; (f) the trans effect of the sole strong ligand in the d8 square-planar Ni(II), the stability of the η3-benzyl intermediate, and the availability of three coordination sites enable regioselective hydrovinylation over the possible oligomerization/polymerization of the olefin substrates and linear hydrovinylation. This work has also confirmed the previously recognized role of the hemilabile group at various stages in the mechanism.
Resumo:
Nickel(I1) and palladium(I1) complexes of the types Ni(R-IAI)(IAI'), Pd(IAI)(IAI'), and Pd(R-IAI), , where IAI and IAI' represent isonitrosoacetylacetone imine and R-IAI represents its Aralkyl derivative, have been prepared. The molar conductance, molecular weight, magnetic moment, and ir, pmr, and electronic spectra of these com- plexes have been studied. It is suggested that the isonitroso group of R-IAI coordinates through the nitrogen and that of IAI' thiough the oxygen in Ni(R-IAI)(IAI'). In Pd(R-IAI), the isonitroso groups of both ligands coordinate through nitrogen while Pd(IAI)(IAI') has a structure similar to that of Ni(R-IAI)(IAI'). The amine- exchange reactions of nickel(I1) and palladium(I1) complexes are discussed and compared on the basis of their structures.
Resumo:
Preparation and structural characterization of palladium (II) complexes of ligands III-V and copper (II) complexes of III are reported. The elemental analyses of the complexes show that the metal: ligand ratio is 1 : 2. The electrical conductance in acetone shows the non-electrolytic nature of the complexes. The diamagnetic character suggests a gross square-planar geometry for the palladium (II) complexes. Copper (II) complexes are paramagnetic with/~eff.~l'90 B.M. Spectral data suggest that in all the complexes the ligand coordinates to the metal (II) symmetrically through isonitroso-nitrogen and imine-nitrogen, forming a ¡ membered chelate ring. Amine-exchange reactions of the complexes are discussed and compared on the basis of their structures.