1000 resultados para ON-INSULATOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows a comparison between the analog performance of standard and strained Si n-type triple-gate FinFETs with high-K dielectrics and TiN gate material. Different channel lengths and fin widths are studied. It is demonstrated that both standard and strained FinFETs with short channel length and narrow fins have similar analog properties, whereas the increase of the channel length degrades the early voltage of the strained devices, consequently decreasing the device intrinsic voltage gain with respect to standard ones. Narrow strained FinFETs with long channel show a degradation of the Early voltage if compared to standard ones suggesting that strained devices are more subjected to the channel length modulation effect. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A CMOS/SOI circuit to decode PWM signals is presented as part of a body-implanted neurostimulator for visual prosthesis. Since encoded data is the sole input to the circuit, the decoding technique is based on a double-integration concept and does not require dc filtering. Nonoverlapping control phases are internally derived from the incoming pulses and a fast-settling comparator ensures good discrimination accuracy in the megahertz range. The circuit was integrated on a 2 mu m single-metal SOI fabrication process and has an effective area of 2mm(2) Typically, the measured resolution of encoding parameter a was better than 10% at 6MHz and V-DD=3.3V. Stand-by consumption is around 340 mu W. Pulses with frequencies up to 15MHz and alpha = 10% can be discriminated for V-DD spanning from 2.3V to 3.3V. Such an excellent immunity to V-DD deviations meets a design specification with respect to inherent coupling losses on transmitting data and power by means of a transcutaneous link.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) is rapidly emerging as a very promising material platform for integrated photonics. As it combines the potential for optoelectronic integration with the low-cost and large volume manufacturing capabilities and they are already accumulate a huge amount of applications in areas like sensing, quantum optics, optical telecommunications and metrology. One of the main limitations of current technology is that waveguide propagation losses are still much higher than in standard glass-based platform because of many reasons such as bends, surface roughness and the very strong optical confinement provided by SOI. Such high loss prevents the fabrication of efficient optical resonators and complex devices severely limiting the current potential of the SOI platform. The project in the first part deals with the simple waveguides loss problem and trying to link that with the polarization problem and the loss based on Fabry-Perot Technique. The second part of the thesis deals with the Bragg Grating characterization from again the point of view of the polarization effect which leads to a better stop-band use filters. To a better comprehension a brief review on the basics of the SOI and the integrated Bragg grating ends up with the fabrication techniques and some of its applications will be presented in both parts, until the end of both the third and the fourth chapters to some results which hopefully make its precedent explanations easier to deal with.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a numerical design approach has been proposed and developed based on the transmission matrix method in order to characterize periodic and quasi-periodic photonic structures in silicon-on-insulator. The approach and its performance have been extensively tested with specific structures in 2D and its validity has been verified in 3D.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fin field effect transistors (FinFETS) are silicon-on-insulator (SOI) transistors with three-dimensional structures. As a result of some fabrication-process limitations (as nonideal anisotropic overetch) some FinFETs have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections, as expected. This geometric alteration results in some device issues, like carrier profile, threshold voltage, and corner effects. This work analyzes these consequences based on three-dimensional numeric simulation of several dual-gate and triple-gate FinFETs. The simulation results show that the threshold voltage depends on the sidewall inclination angle and that this dependence varies according to the body doping level. The corner effects also depend on the inclination angle and doping level. (C) 2008 The Electrochemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The temperature influence on the gate-induced floating body effect (GIFBE) in fully depleted (FD) silicon-on-insulator (SOI) nMOSFETs is investigated, based on experimental results and two-dimensional numerical simulations. The GIFBE behavior will be evaluated taking into account the impact of carrier recombination and of the effective electric field mobility degradation on the second peak in the transconductance (gm). This floating body effect is also analyzed as a function of temperature. It is shown that the variation of the studied parameters with temperature results in a ""C"" shape of the threshold voltage corresponding with the second peak in the gm curve. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One-transistor floating-body random access memory retention time distribution is investigated on silicon-on-insulator UTBOX devices. It is shown that the average retention time can be improved by two to three orders of magnitude by reducing the body-junction electric field. However, the retention time distribution, which is mainly caused by the generation-recombination center density variation, remains similar.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The measured inter-electrode capacitances of silicon-on-sapphire (SOS) MOSFETs are presented and compared with simulation results. It is shown that the variations of capacitances with DC bias differ from those of bulk MOSFETs due to change in body potential variation of the SOS device resulting from electron-hole pair generation through impact ionisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The harmonic distortion (HD) exhibited by un-strained and biaxially strained fin-shaped field-effect transistors operating in saturation as single-transistor amplifiers has been investigated for devices with different channel lengths L and fin widths W(fin). The study has been performed through device characterization, 3-D device simulations, and modeling. Nonlinearity has been evaluated in terms of second- and third-order HDs (HD2 and HD3, respectively), and a discussion on its physical sources has been carried out. Also, the influence of the open-loop voltage gain AV in HD has been observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes a refined technique for the extraction of the generation lifetime in single- and double-gate partially depleted SOI nMOSFETs. The model presented in this paper, based on the drain current switch-off transients, takes into account the influence of the laterally non-uniform channel doping, caused by the presence of the halo implanted region, and the amount of charge controlled by the drain and source junctions on the floating body effect when the channel length is reduced. The obtained results for single- gate (SG) devices are compared with two-dimensional numerical simulations and experimental data, extracted for devices fabricated in a 0.1 mu m SOI CMOS technology, showing excellent agreement. The improved model to determine the generation lifetime in double-gate (DG) devices beyond the considerations previously presented also consider the influence of the silicon layer thickness on the drain current transient. The extracted data through the improved model for DG devices were compared with measurements and two-dimensional numerical simulations of the SG devices also presenting a good adjustment with the channel length reduction and the same tendency with the silicon layer thickness variation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates the harmonic distortion (HD) in 2-MOS balanced structures composed of triple gate FinFETs. HD has been evaluated through the determination of the third-order harmonic distortion (HD3), since this represents the major non-linearity source in balanced structures. The 2-MOS structures with devices of different channel lengths (L) and fin widths (W(fin)) have been studied operating in the linear region as tunable resistors. The analysis was performed as a function of the gate voltage, aiming to verify the correlation between operation bias and HD3. The physical origins of the non-linearities have been investigated and are pointed out. Being a resistive circuit, the 2-MOS structure is generally projected for a targeted on-resistance, which has also been evaluated in terms of HD3. The impact of the application of biaxial strain has been studied for FinFETs of different dimensions. It has been noted that HD3 reduces with the increase of the gate bias for all the devices and this reduction is more pronounced both in narrower and in longer devices. Also, the presence of strain slightly diminishes the non-linearity at a similar bias. However, a drawback associated with the use of strain engineering consists in a significant reduction of the on-resistance with respect to unstrained devices. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This letter presents the properties of nMOS junctionless nanowire transistors (JNTs) under cryogenic operation. Experimental results of drain current, subthreshold slope, maximum transconductance at low electric field, and threshold voltage, as well as its variation with temperature, are presented. Unlike in classical devices, the drain current of JNTs decreases when temperature is lowered, although the maximum transconductance increases when the temperature is lowered down to 125 K. An analytical model for the threshold voltage is proposed to explain the influence of nanowire width and doping concentration on its variation with temperature. It is shown that the wider the nanowire or the lower the doping concentration, the higher the threshold voltage variation with temperature.