974 resultados para NONASSOCIATIVE ALGEBRA
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The problem of the classification of the extensions of the Virasoro algebra is discussed. It is shown that all H-reduced G(r)-current algebras belong to one of the following basic algebraic structures: local quadratic W-algebras, rational U-algebras, nonlocal W-algebras, nonlocal quadratic WV-algebras and rational nonlocal UV-algebras. The main new features of the quantum Ir-algebras and their heighest weight representations are demonstrated on the example of the quantum V-3((1,1))-algebra.
Resumo:
We apply Kolesnikov's algorithm to obtain a variety of nonassociative algebras defined by right anticommutativity and a "noncommutative" version of the Malcev identity. We use computer algebra to verify that these identities are equivalent to the identities of degree up to 4 satisfied by the dicommutator in every alternative dialgebra. We extend these computations to show that any special identity for Malcev dialgebras must have degree at least 7. Finally, we introduce a trilinear operation which makes any Malcev dialgebra into a Leibniz triple system.
Resumo:
Linear algebra provides theory and technology that are the cornerstones of a range of cutting edge mathematical applications, from designing computer games to complex industrial problems, as well as more traditional applications in statistics and mathematical modelling. Once past introductions to matrices and vectors, the challenges of balancing theory, applications and computational work across mathematical and statistical topics and problems are considerable, particularly given the diversity of abilities and interests in typical cohorts. This paper considers two such cohorts in a second level linear algebra course in different years. The course objectives and materials were almost the same, but some changes were made in the assessment package. In addition to considering effects of these changes, the links with achievement in first year courses are analysed, together with achievement in a following computational mathematics course. Some results that may initially appear surprising provide insight into the components of student learning in linear algebra.
Resumo:
Learning to operate algebraically is a complex process that is dependent upon extending arithmetic knowledge to the more complex concepts of algebra. Current research has shown a gap between arithmetic and algebraic knowledge and suggests a pre-algebraic level as a step between the two knowledge types. This paper examines arithmetic and algebraic knowledge from a cognitive perspective in an effort to determine what constitutes a pre-algebraic level of understanding. Results of a longitudinal study designed to investigate students' readiness for algebra are presented. Thirty-three students in Grades 7, 8, and 9 participated. A model for the transition from arithmetic to pre-algebra to algebra is proposed and students' understanding of relevant knowledge is discussed.