Malcev dialgebras


Autoria(s): Bremner, Murray R.; Peresi, Luiz A.; Sanchez-Ortega, Juana
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

04/11/2013

04/11/2013

02/08/2013

Resumo

We apply Kolesnikov's algorithm to obtain a variety of nonassociative algebras defined by right anticommutativity and a "noncommutative" version of the Malcev identity. We use computer algebra to verify that these identities are equivalent to the identities of degree up to 4 satisfied by the dicommutator in every alternative dialgebra. We extend these computations to show that any special identity for Malcev dialgebras must have degree at least 7. Finally, we introduce a trilinear operation which makes any Malcev dialgebra into a Leibniz triple system.

NSERC

NSERC

CNPq of Brazil

CNPq of Brazil

Spanish MEC [MTM2010-15223]

Spanish MEC

Fondos FEDER [MTM2010-15223]

Fondos FEDER

Junta de Andalucia

Junta de Andalucia [FQM-336, FQM2467]

Identificador

LINEAR & MULTILINEAR ALGEBRA, ABINGDON, v. 60, n. 10, supl. 1, Part 3, pp. 1125-1141, 42005, 2012

0308-1087

http://www.producao.usp.br/handle/BDPI/37855

10.1080/03081087.2011.651721

http://dx.doi.org/10.1080/03081087.2011.651721

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS LTD

ABINGDON

Relação

LINEAR & MULTILINEAR ALGEBRA

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS LTD

Palavras-Chave #NONASSOCIATIVE ALGEBRA #COMPUTER ALGEBRA #DIALGEBRAS #TRILINEAR OPERATIONS #ALGEBRAS #MATHEMATICS
Tipo

article

original article

publishedVersion