Malcev dialgebras
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
04/11/2013
04/11/2013
02/08/2013
|
Resumo |
We apply Kolesnikov's algorithm to obtain a variety of nonassociative algebras defined by right anticommutativity and a "noncommutative" version of the Malcev identity. We use computer algebra to verify that these identities are equivalent to the identities of degree up to 4 satisfied by the dicommutator in every alternative dialgebra. We extend these computations to show that any special identity for Malcev dialgebras must have degree at least 7. Finally, we introduce a trilinear operation which makes any Malcev dialgebra into a Leibniz triple system. NSERC NSERC CNPq of Brazil CNPq of Brazil Spanish MEC [MTM2010-15223] Spanish MEC Fondos FEDER [MTM2010-15223] Fondos FEDER Junta de Andalucia Junta de Andalucia [FQM-336, FQM2467] |
Identificador |
LINEAR & MULTILINEAR ALGEBRA, ABINGDON, v. 60, n. 10, supl. 1, Part 3, pp. 1125-1141, 42005, 2012 0308-1087 http://www.producao.usp.br/handle/BDPI/37855 10.1080/03081087.2011.651721 |
Idioma(s) |
eng |
Publicador |
TAYLOR & FRANCIS LTD ABINGDON |
Relação |
LINEAR & MULTILINEAR ALGEBRA |
Direitos |
restrictedAccess Copyright TAYLOR & FRANCIS LTD |
Palavras-Chave | #NONASSOCIATIVE ALGEBRA #COMPUTER ALGEBRA #DIALGEBRAS #TRILINEAR OPERATIONS #ALGEBRAS #MATHEMATICS |
Tipo |
article original article publishedVersion |