928 resultados para Motion study
Resumo:
Peripheral venous catheters (PVCs) are the simplest and most frequently used method for drug, fluid, and blood product administration in the hospital setting. It is estimated that up to 90% of patients in acute care hospitals require a PVC; however, PVCs are associated with inherent complications, which can be mechanical or infectious. There have been a range of strategies to prevent or reduce PVC-related complications that include optimizing patency through the use of flushing. Little is known about the current status of flushing practice. This observational study quantified preparation and administration time and identified adherence to principles of Aseptic Non-Touch Technique and organizational protocol on PVC flushing by using both manually prepared and prefilled syringes.
Resumo:
Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.
Resumo:
Utilizing advanced information technology, Intensive Care Unit (ICU) remote monitoring allows highly trained specialists to oversee a large number of patients at multiple sites on a continuous basis. In the current research, we conducted a time-motion study of registered nurses’ work in an ICU remote monitoring facility. Data were collected on seven nurses through 40 hours of observation. The results showed that nurses’ essential tasks were centered on three themes: monitoring patients, maintaining patients’ health records, and managing technology use. In monitoring patients, nurses spent 52% of the time assimilating information embedded in a clinical information system and 15% on monitoring live vitals. System-generated alerts frequently interrupted nurses in their task performance and redirected them to manage suddenly appearing events. These findings provide insight into nurses’ workflow in a new, technology-driven critical care setting and have important implications for system design, work engineering, and personnel selection and training.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 211-226.
Resumo:
[no. 1] Necessary motions to perform operations.--[no. 2] Dictionary of motion study, words and terms.--[no. 3] Time definitions.
Resumo:
In this paper, we discuss the design of a manually operated soil compaction machine that is being used to manufacture stabilized soil blocks (SSB). A case study of manufacturing more than three million blocks in a housing project using manually operated machines is illustrated. The paper is focussed on the design, development, and evaluation of a manually operated soil compaction machine for the production of SSB. It also details the machine design philosophy, compaction characteristics of soils, employment generation potential of small-scale stabilized soil block productions systems, and embodied energy. Static compaction of partially saturated soils was performed to generate force-displacement curves in a confined compaction process were generated. Based on the soil compaction data engineering design aspects of a toggle press are illustrated. The results of time and motion study on block production operations using manual machines are discussed. Critical path network diagrams were used for small-scale SSB production systems. Such production systems generate employment at a very low capital cost.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A time-and-motion study in wood processing of the Eucalyptus harvester's operational cycle was developed. The objective was to evaluate wood harvesters working under several site conditions. The research includes two kinds of harvesters while processing wood to supply paper and cellulose factories, as follows: a machine with twin tires and other one with large tracks, both connected to a different head harvester models. The forestry species were Eucalyptus saligna Smith and Eucalyptus grandis Hill ex Maiden, seven and eight years old, in slope terrains ranging from 0% to 10% degrees, under harvesting systems used by Votorantim and Suzano forestry companies, in São Paulo State, Brazi. Considering all field research, results disclosed that, for some conditions, both machines have shown mathematical correlation between some mechanical wood operation within the processing operational cycle and the saw logs production. All the mathematical correlations were found to express logarithmical models.
Resumo:
The molecular complex containing the seven transmembrane helix photoreceptor S&barbelow;ensory R&barbelow;hodopsin I&barbelow; (SRI) and transducer protein HtrI (H&barbelow;alobacterial Transducer for SRI&barbelow;) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light (orange + UV light) a repellent response by a two-photon reaction. Three aspects of SRI-HtrI structure/function and the signal transduction pathway were explored. First, the coupling of HtrI to the photoactive site of SRI was analyzed by mutagenesis and kinetic spectroscopy. Second, SRI-HtrI mutations and suppressors were selected and characterized to elucidate the color-sensing mechanism. Third, the signal relay through the transducer-bound histidine kinase was analyzed using an in vitro reconstitution system with known and newly identified taxis components. ^ Twenty-one mutations on HtrI were introduced by site-directed mutagenesis. Several replacements of charged residues perturbed the photochemical kinetics of SRI which led to the finding of a cluster of residues at the membrane/cytoplasm interface in HtrI electrostatically coupled to the photoactive site of SRI. We found by laser-flash kinetic spectroscopy that the transducer and these residues have specific effects on the light-induced proton transfer between the retinal chromophore and the protein. ^ One of the mutations showed an unusual mutant phenotype we called “inverted” signaling, in which the cell produces a repellent response to normally attractant light. Therefore, this mutant (E56Q of HtrI) had lost the color-discrimination by the SRI-HtrI complex. We used suppressor analysis to better understand the phenotype. Certain suppressors resulted in return of attractant responses to orange light but with inversion of the normally repellent response to white light to an attractant response. To explain this and other results, we formulated the Conformational Shuttling model in which the HtrI-SRI complex is poised in a metastable equilibrium of two conformations shifted in opposite directions by orange and white light. We tested this model by behavioral analysis (computerized cell tracking and motion study) of double mutants of inverting and suppressing mutations and the results confirmed the equilibrium-shift explanation. ^ We developed an in vitro system for measuring the effect of purified transducer on the histidine-kinase CheAH that controls the flagellar motor switch. The rate of kinase autophosphorylation was stimulated >2 fold in the reconstitution of the complete signal transduction system from purified components from H. salinarum. The in vitro assay also showed that the kinase activity was reduced in the absence and in the presence of high levels of linker protein CheWH. (Abstract shortened by UMI.) ^
Resumo:
Mode of access: Internet.
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.
Resumo:
Detailed molecular simulations are carried out to investigate the effect of temperature on orientational order in cubane molecular crystal. We report a transition from an orientationally ordered to an orientationally disordered plastic crystalline phase in the temperature range 425-450 K. This is similar to the experimentally reported transition at 395 K. The nature of this transition is first order and is associated with a 4.8% increase in unit Cell volume that is comparable to the experimentally reported unit cell volume change of 5.4% (Phys. Rev. Lett. 1997, 78, 4938). An orientational order parameter, eta(T), has been defined in terms of average angle of libration of a molecular 3-fold axis and the orientational melting has been characterized by using eta(T). The orientational melting is associated with an anomaly in specific heat at constant pressure (C-p) and compressibility (kappa). The enthalpy of transition and entropy of transition associated with this orientational melting are 20.8 J mol(-1) and 0.046 J mol(-1) K-1, respectively. The structure of crystalline as well as plastic crystalline phases is characterized by using various radial distribution functions and orientational distribution functions. The coefficient of thermal expansion of the plastic crystalline phase is more than twice that of the crystalline phase.