835 resultados para Indole monotepene alkaloids
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An enantiospecific total synthesis of indole alkaloids eburnamonine, aspidospermidine and quebrachamine is described from lactic acid. Synthesis of all three alkaloids is accomplished from a single chiral building block. Johnson-Claisen rearrangement of a chiral allyl alcohol is the main feature for the installation of the required quaternary centre.
Resumo:
The total synthesis of new indole alkaloids henrycinol A and B were accomplished starting from L-tryptophan methyl ester. The key step is a stereochemically flexible Pictet-Spengler reaction governed by the presence or absence of an N-allyl group in the tryptophan precursor. The natural products henrycinol A and B were synthesized in good overall yield in eight and nine steps, respectively. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A diprenylated indole, (E)-3-(3-hydroxymethyl-2-butenyl)-7-(3-methyl-2-butenyl)-1H-indole (1), and six known carbazole alkaloids were isolated from the twigs and leaves of Glycosmis montana Pierre (Rutaceae). Their structures were determined on the basis of analysis of spectral evidence including 1D and 2D NMR and MS. The alkaloids (1-3) exhibited weak to moderate take in vitro inhibitory activity against HIV replication in C8166 cells, and they (as well as carbalexine A and B) had cytotoxic activity against the human leukaemia cell line CCRF-CEM. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Anthocephalusine A (1) and 3 beta-isodihydrocadambine 4-oxide (2) were isolated from the leaves of Anthocephalus chinensis (Rubiaceac), together with five known compounds. The structures were established by spectroscopic methods including 2D-NMR analyses.
Resumo:
The plant family Apocynaceae accumulates thousands of monoterpene indole alkaloids (MIAs) which originate, biosynthetically, from the common secoiridoid intermediate, strictosidine, that is formed from the condensation of tryptophan and secologanin molecules. MIAs demonstrate remarkable structural diversity and have pharmaceutically valuable biological activities. For example; a subunit of the potent anti-neoplastic molecules vincristine and vinblastine is the aspidosperma alkaloid, vindoline. Vindoline accumulates to trace levels under natural conditions. Research programs have determined that there is significant developmental and light regulation involved in the biosynthesis of this MIA. Furthermore, the biosynthetic pathway leading to vindoline is split among at least five independent cell types. Little is known of how intermediates are shuttled between these cell types. The late stage events in vindoline biosynthesis involve six enzymatic steps from tabersonine. The fourth biochemical step, in this pathway, is an indole N-methylation performed by a recently identified N-methyltransfearse (NMT). For almost twenty years the gene encoding this NMT had eluded discovery; however, in 2010 Liscombe et al. reported the identification of a γ-tocopherol C-methyltransferase homologue capable of indole N-methylating 2,3-dihydrotabersonine and Virus Induced Gene Silencing (VIGS) suppression of the messenger has since proven its involvement in vindoline biosynthesis. Recent large scale sequencing initiatives, performed on non-model medicinal plant transcriptomes, has permitted identification of candidate genes, presumably involved, in MIA biosynthesis never seen before in plant specialized metabolism research. Probing the transcriptome assemblies of Catharanthus roseus (L.)G.Don, Vinca minor L., Rauwolfia serpentine (L.)Benth ex Kurz, Tabernaemontana elegans, and Amsonia hubrichtii, with the nucleotide sequence of the N-methyltransferase involved in vindoline biosynthesis, revealed eight new homologous methyltransferases. This thesis describes the identification, molecular cloning, recombinant expression and biochemical characterization of two picrinine NMTs, one from V. minor and one from R. serpentina, a perivine NMT from C. roseus, and an ajmaline NMT from R. serpentina. While these TLMTs were expressed and functional in planta, they were active at relatively low levels and their N-methylated alkaloid products were not apparent our from alkaloid isolates of the plants. It appears that, for the most part, these TLMTs, participate in apparently silent biochemical pathways, awaiting the appropriate developmental and environmental cues for activity.
Resumo:
This paper reports the separation of the indole alkaloids from the benzene extract of the root barks of Tabernaemontana hilariana (Apocynaceae). The crude alkaloid fraction was fractionated by droplet counter-current chromatography using a low polarity mixture (hexane:ethyl acetate:ethanol:water). Nine indole alkaloids (3-hydroxycoronaridine, coronaridine, voacangine, 3-(2-oxopropyl) coronaridine, voacangine hydroxyindolenine, ibogamine, voacangine pseudoindoxyl, coronaridine pseudoindoxyl and tabernanthine) were identified using thin laver chromatography gas chromatography coupled with mass spectrometry and nuclear magnetic resonance spectroscopy. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
This paper reports the separation and identification of indole alkaloids, steroids and triterpenoids from the ethanolic extracts of Tabernaemontana hilariana (Apocynaceae). The alkaloidal fractions from the ethanolic extracts obtained (root barks, green fruits, ripe fruits and seeds) were fractionated and analysed by thin-layer chromatography, capillary gas chromatography-flame ionization detection (cGC-FID) as well as by high-resolution gas chromatography-mass spectrometry (HRGC-MS). 3-Hydroxycoronaridine, ibogamine, coronaridine pseudoindoxyl, coronaridine, catharanthine, voacangine hydroxyindolenine, voacangine pseudoindoxyl, tabernanthine, tetraphyllicine, 3-hydroxyvoacangine, voacangine, isovoacangine and 3-oxocoronaridine were identified. The insoluble fraction of ethanolic extracts obtained from the root barks and green fruits were analysed and ten aliphatic constituents were also identified by cGC-FID and HRGC-MS. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Extraction of the leaves of Chimarrhis turbinata has led to the isolation of turbinatine (1), a new corynanthean-type indole alkaloid, besides four known indole alkaloids, strictosidine, 5alpha-carboxystrictosidine, vallesiachotamine, and isovallesiachotamine. The structural determination of 1 was based on 1D and 2D spectroscopic data. An evaluation of the DNA-damaging activities of the isolates was performed by means of a bioassay using mutant strains of Saccharomyces cerevisiae, which indicated these compounds were weakly active.
Resumo:
A fast and efficient procedure was elaborated to identify the alkaloid constituents from Tabernaemontana hilariana (Apocynaceae). The strategy based on fractioning of the crude alkaloid fraction in small silica cartridges followed by thin-layer chromatography (TLC), capillary gas chromatography-flame ionization detection as well as high-resolution gas chromatography-mass spectrometry afforded voacangine, coronaridine, ibogamine, voacangine pseudoindoxyl, voacangine hydroxyindolenine, 3-hydroxycoronaridine and 3-(2-oxopropyl)coronaridine. (C) 1997 Elsevier B.V. B.V.
Resumo:
In this work we presented several aspects regarding the possibility to use readily available propargylic alcohols as acyclic precursors to develop new stereoselective [Au(I)]-catalyzed cascade reactions for the synthesis of highly complex indole architectures. The use of indole-based propargylic alcohols of type 1 in a stereoselective [Au(I)]-catalyzed hydroindolynation/immiun trapping reactive sequence opened access to a new class of tetracyclic indolines, dihydropyranylindolines A and furoindolines B. An enantioselective protocol was futher explored in order to synthesize this molecules with high yields and ee. The suitability of propargylic alcohols in [Au(I)]-catalyzed cascade reactions was deeply investigated by developing cascade reactions in which was possible not only to synthesize the indole core but also to achieve a second functionalization. Aniline based propargylic alcohols 2 were found to be modular acyclic precursors for the synthesis of [1,2-a] azepinoindoles C. In describing this reactivity we additionally reported experimental evidences for an unprecedented NHCAu(I)-vinyl specie which in a chemoselective fashion, led to the annulation step, synthesizing the N1-C2-connected seven membered ring. The chemical flexibility of propargylic alcohols was further explored by changing the nature of the chemical surrounding with different preinstalled N-alkyl moiety in propargylic alcohols of type 3. Particularly, in the case of a primary alcohol, [Au(I)] catalysis was found to be prominent in the synthesis of a new class of [4,3-a]-oxazinoindoles D while the use of an allylic alcohol led to the first example of [Au(I)] catalyzed synthesis and enantioselective functionalization of this class of molecules (D*). With this work we established propargylic alcohols as excellent acyclic precursor to developed new [Au(I)]-catalyzed cascade reaction and providing new catalytic synthetic tools for the stereoselective synthesis of complex indole/indoline architectures.
Resumo:
A new indole alkaloid, akuammiginone (1), and a new glycosidic indole alkaloid, echitamidine-N-oxide 19-O-beta-D-glucopyranoside (2), together with the five known alkaloids, echitaminic acid (3), echitamidine N-oxide (4), N-b-demethylalstogustine N-oxide (5), akuammicine N-oxide (6), and N-b-demethylalstogustine (7), were isolated from the trunk bark of Alstonia scholaris collected in Timor, Indonesia. The structures of all compounds were elucidated by spectroscopic methods. This is the first report of compounds 3-5 and 7 in A. scholaris. Some NMR assignments of the known compounds were revised.
Resumo:
Two new indole alkaloids, polyneuridine-N-oxide (1) and 17-hydroxy-10-methoxy-yohimbane (2), together with seven known alkaloids were isolated from the roots of Ochrosia acuminata collected in Savu, Indonesia. 9-Methoxyellipticine (3) and ellipticine (4) were responsible for the antitumor activities of the extract. The structures of all compounds were elucidated using MS and NMR methods.