942 resultados para Geometry, Hyperbolic.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
In this paper we investigate the role of horospheres in Integral Geometry and Differential Geometry. In particular we study envelopes of families of horocycles by means of “support maps”. We define invariant “linear combinations” of support maps or curves. Finally we obtain Gauss-Bonnet type formulas and Chern-Lashof type inequalities.
Resumo:
Exercises, exam questions and solutions for a fourth year hyperbolic geometry course. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
In the first part of this thesis we generalize a theorem of Kiming and Olsson concerning the existence of Ramanujan-type congruences for a class of eta quotients. Specifically, we consider a class of generating functions analogous to the generating function of the partition function and establish a bound on the primes ℓ for which their coefficients c(n) obey congruences of the form c(ℓn + a) ≡ 0 (mod ℓ). We use this last result to answer a question of H.C. Chan. In the second part of this thesis [S2] we explore a natural analog of D. Calegari’s result that there are no hyperbolic once-punctured torus bundles over S^1 with trace field having a real place. We prove a contrasting theorem showing the existence of several infinite families of pairs (−χ, p) such that there exist hyperbolic surface bundles over S^1 with trace field of having a real place and with fiber having p punctures and Euler characteristic χ. This supports our conjecture that with finitely many known exceptions there exist such examples for each pair ( −χ, p).
Resumo:
A comparative performance analysis of four geolocation methods in terms of their theoretical root mean square positioning errors is provided. Comparison is established in two different ways: strict and average. In the strict type, methods are examined for a particular geometric configuration of base stations(BSs) with respect to mobile position, which determines a givennoise profile affecting the respective time-of-arrival (TOA) or timedifference-of-arrival (TDOA) estimates. In the average type, methodsare evaluated in terms of the expected covariance matrix ofthe position error over an ensemble of random geometries, so thatcomparison is geometry independent. Exact semianalytical equationsand associated lower bounds (depending solely on the noiseprofile) are obtained for the average covariance matrix of the positionerror in terms of the so-called information matrix specific toeach geolocation method. Statistical channel models inferred fromfield trials are used to define realistic prior probabilities for therandom geometries. A final evaluation provides extensive resultsrelating the expected position error to channel model parametersand the number of base stations.
Resumo:
We study the horospherical geometry of submanifolds in hyperbolic space. The main result is a formula for the total absolute horospherical curvature of M, which implies, for the horospherical geometry, the analogues of classical inequalities of the Euclidean Geometry. We prove the horospherical Chern-Lashof inequality for surfaces in 3-space and the horospherical Fenchel and Fary-Milnor`s theorems.
Resumo:
We study horo-tight immersions of manifolds into hyperbolic spaces. The main result gives several characterizations of horo-tightness of spheres, answering a question proposed by Cecil and Ryan. For instance, we prove that a sphere is horo-tight if and only if it is tight in the hyperbolic sense. For codimension bigger than one, it follows that horo-tight spheres in hyperbolic space are metric spheres. We also prove that horo-tight hyperspheres are characterized by the property that both of its total absolute horospherical curvatures attend their minimum value. We also introduce the notion of weak horo-tightness: an immersion is weak horo-tight if only one of its total absolute curvature attends its minimum. We prove a characterization theorem for weak horo-tight hyperspheres.
Resumo:
Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.
Resumo:
The investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.
Resumo:
Using the Plucker map between grassmannians, we study basic aspects of classic grassmannian geometries. For 'hyperbolic' grassmannian geometries, we prove some facts (for instance, that the Plucker map is a minimal isometric embedding) that were previously known in the 'elliptic' case.
Resumo:
In 1983, M. van den Berg made his Fundamental Gap Conjecture about the difference between the first two Dirichlet eigenvalues (the fundamental gap) of any convex domain in the Euclidean plane. Recently, progress has been made in the case where the domains are polygons and, in particular, triangles. We examine the conjecture for triangles in hyperbolic geometry, though we seek an for an upper bound for the fundamental gap rather than a lower bound.
Resumo:
This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.
Resumo:
We study solutions of the two-dimensional quasi-geostrophic thermal active scalar equation involving simple hyperbolic saddles. There is a naturally associated notion of simple hyperbolic saddle breakdown. It is proved that such breakdown cannot occur in finite time. At large time, these solutions may grow at most at a quadruple-exponential rate. Analogous results hold for the incompressible three-dimensional Euler equation.
Resumo:
Includes index.
Resumo:
The objective of this study was to evaluate children's respiratory patterns in the mixed dentition, by means of acoustic rhinometry, and its relation to the upper arch width development. Fifty patients were examined, 25 females and 25 males with mean age of eight years and seven months. All of them were submitted to acoustic rhinometry and upper and lower arch impressions to obtain plaster models. The upper arch analysis was accomplished by measuring the interdental transverse distance of the upper teeth, deciduous canines (measurement 1), deciduous first molars (measurement 2), deciduous second molars (measurement 3) and the first molars (measurement 4). The results showed that an increased left nasal cavity area in females means an increased interdental distance of the deciduous first molars and deciduous second molars and an increased interdental distance of the deciduous canines, deciduous first and second molars in males. It was concluded that there is a correlation between the nasal cavity area and the upper arch transverse distance in the anterior and mid maxillary regions for both genders.