Total absolute horospherical curvature of submanifolds in hyperbolic space
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We study the horospherical geometry of submanifolds in hyperbolic space. The main result is a formula for the total absolute horospherical curvature of M, which implies, for the horospherical geometry, the analogues of classical inequalities of the Euclidean Geometry. We prove the horospherical Chern-Lashof inequality for surfaces in 3-space and the horospherical Fenchel and Fary-Milnor`s theorems. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil[141321/00-8] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
ADVANCES IN GEOMETRY, v.10, n.4, p.603-620, 2010 1615-715X http://producao.usp.br/handle/BDPI/28814 10.1515/ADVGEOM.2010.029 |
Idioma(s) |
eng |
Publicador |
WALTER DE GRUYTER & CO |
Relação |
Advances in Geometry |
Direitos |
restrictedAccess Copyright WALTER DE GRUYTER & CO |
Palavras-Chave | #Hyperbolic space #horospherical geometry #the Chern-Lashof type inequality #IMMERSED MANIFOLDS #SURFACES #SINGULARITIES #GEOMETRY #Mathematics |
Tipo |
article original article publishedVersion |