Total absolute horospherical curvature of submanifolds in hyperbolic space


Autoria(s): BUOSI, Marcelo; IZUMIYA, Shyuichi; RUAS, Maria Aparecida Soares
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We study the horospherical geometry of submanifolds in hyperbolic space. The main result is a formula for the total absolute horospherical curvature of M, which implies, for the horospherical geometry, the analogues of classical inequalities of the Euclidean Geometry. We prove the horospherical Chern-Lashof inequality for surfaces in 3-space and the horospherical Fenchel and Fary-Milnor`s theorems.

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil[141321/00-8]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

ADVANCES IN GEOMETRY, v.10, n.4, p.603-620, 2010

1615-715X

http://producao.usp.br/handle/BDPI/28814

10.1515/ADVGEOM.2010.029

http://dx.doi.org/10.1515/ADVGEOM.2010.029

Idioma(s)

eng

Publicador

WALTER DE GRUYTER & CO

Relação

Advances in Geometry

Direitos

restrictedAccess

Copyright WALTER DE GRUYTER & CO

Palavras-Chave #Hyperbolic space #horospherical geometry #the Chern-Lashof type inequality #IMMERSED MANIFOLDS #SURFACES #SINGULARITIES #GEOMETRY #Mathematics
Tipo

article

original article

publishedVersion