935 resultados para Entire functions in the Laguerre-Pölya class
Resumo:
The celebrated Turân inequalities P 2 n(x)-P n-x(x)P n+1(x) ≥ 0, x ε[-1,1], n ≥ 1, where P n(x) denotes the Legendre polynomial of degree n, are extended to inequalities for sums of products of four classical orthogonal polynomials. The proof is based on an extension of the inequalities γ 2 n - γ n-1γ n+1 ≥ 0, n ≥ 1, which hold for the Maclaurin coefficients of the real entire function ψ in the Laguerre-Pölya class, ψ(x) = ∑ ∞ n=0 γ nx n / n!. ©1998 American Mathematical Society.
Resumo:
Motivated by the recent solution of Karlin's conjecture, properties of functions in the Laguerre-Polya class are investigated. The main result of this paper establishes new moment inequalities fur a class of entire functions represented by Fourier transforms. The paper concludes with several conjectures and open problems involving the Laguerre-Polya class and the Riemann xi -function.
Resumo:
We prove that the only Jensen polynomials associated with an entire function in the Laguerre-Polya class that are orthogonal are the Laguerre polynomials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Boundary value problems for analytic functions in the class of Cauchy-type integrals with density in
Resumo:
We study the Riemann boundary value problem , for analytic functions in the class of analytic functions represented by the Cauchy-type integrals with density in the spaces with variable exponent. We consider both the case when the coefficient is piecewise continuous and it may be of a more general nature, admitting its oscillation. The explicit formulas for solutions in the variable exponent setting are given. The related singular integral equations in the same setting are also investigated. As an application there is derived some extension of the Szegö-Helson theorem to the case of variable exponents.
Resumo:
In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new approach to evaluating all multiple complex roots of analytical function f(z) confined to the specified rectangular domain of complex plane has been developed and implemented in Fortran code. Generally f (z), despite being holomorphic function, does not have a closed analytical form thereby inhibiting explicit evaluation of its derivatives. The latter constraint poses a major challenge to implementation of the robust numerical algorithm. This work is at the instrumental level and provides an enabling tool for solving a broad class of eigenvalue problems and polynomial approximations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.
An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane
Resumo:
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.
Resumo:
A complete list of homogeneous operators in the Cowen-Douglas class B-n(D) is given. This classification is obtained from an explicit realization of all the homogeneous Hermitian holomorphic vector bundles on the unit disc under the action of the universal covering group of the bi-holomorphic automorphism group of the unit disc.
Resumo:
We report results from a first principles calculation of spatially dependent correlation functions around a magnetic impurity in metals described by the nondegenerate Anderson model. Our computations are based on a combination of perturbative scaling theory and numerical renormalization group methods. Results for the conduction election charge density around the impurity and correlation functions involving the conduction electron and impurity charge and spin densities will be presented. The behavior in various regimes including the mixed valent regime will be explored.
Resumo:
An explicit construction of all the homogeneous holomorphic Hermitian vector bundles over the unit disc D is given. It is shown that every such vector bundle is a direct sum of irreducible ones. Among these irreducible homogeneous holomorphic Hermitian vector bundles over D, the ones corresponding to operators in the Cowen-Douglas class B-n(D) are identified. The classification of homogeneous operators in B-n(D) is completed using an explicit realization of these operators. We also show how the homogeneous operators in B-n(D) split into similarity classes. (C) 2011 Elsevier Inc. All rights reserved.