Higher order turán inequalities for the Riemann ξ-function
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/03/2011
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Processo FAPESP: 03/01874-2 Processo FAPESP: 06/60420-0 The simplest necessary conditions for an entire function ψ(x) =∞ ∑ k=0 γk xk/k! to be in the Laguerre-Pólya class are the Turán inequalities γ2 k- γk+1γk-1 ≥ 0. These are in fact necessary and sufficient conditions for the second degree generalized Jensen polynomials associated with ψ to be hyperbolic. The higher order Turán inequalities 4(γ2 n - γn-1γn+1)(γ2n +1 - γnγn+2) - (γnγn+1 - γn-1γn+2) 2 ≥ 0 are also necessary conditions for a function of the above form to belong to the Laguerre-Pólya class. In fact, these two sets of inequalities guarantee that the third degree generalized Jensen polynomials are hyperbolic. Pólya conjectured in 1927 and Csordas, Norfolk and Varga proved in 1986 that the Turán inequalities hold for the coefficients of the Riemann ψ-function. In this short paper, we prove that the higher order Turán inequalities also hold for the ψ-function, establishing the hyperbolicity of the associated generalized Jensen polynomials of degree three. © 2010 American Mathematical Society. |
Formato |
1013-1022 |
Identificador |
http://dx.doi.org/10.1090/S0002-9939-2010-10515-4 Proceedings of the American Mathematical Society, v. 139, n. 3, p. 1013-1022, 2011. 0002-9939 http://hdl.handle.net/11449/132295 10.1090/S0002-9939-2010-10515-4 WOS:000288727900024 2-s2.0-79951846250 2-s2.0-79951846250.pdf |
Idioma(s) |
eng |
Publicador |
Amer Mathematical Soc |
Relação |
Proceedings of the American Mathematical Society |
Direitos |
openAccess |
Palavras-Chave | #Jensen polynomials #Laguerre-Pólya class #Maclaurin coefficients #Riemann ξ function #Turán inequalities |
Tipo |
info:eu-repo/semantics/article |