Higher order turän inequalities
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/12/1998
|
Resumo |
The celebrated Turân inequalities P 2 n(x)-P n-x(x)P n+1(x) ≥ 0, x ε[-1,1], n ≥ 1, where P n(x) denotes the Legendre polynomial of degree n, are extended to inequalities for sums of products of four classical orthogonal polynomials. The proof is based on an extension of the inequalities γ 2 n - γ n-1γ n+1 ≥ 0, n ≥ 1, which hold for the Maclaurin coefficients of the real entire function ψ in the Laguerre-Pölya class, ψ(x) = ∑ ∞ n=0 γ nx n / n!. ©1998 American Mathematical Society. |
Formato |
2033-2037 |
Identificador |
http://dx.doi.org/10.1090/S0002-9939-98-04438-4 Proceedings of the American Mathematical Society, v. 126, n. 7, p. 2033-2037, 1998. 0002-9939 http://hdl.handle.net/11449/65596 10.1090/S0002-9939-98-04438-4 WOS:000074694200020 2-s2.0-22044435255 2-s2.0-22044435255.pdf |
Idioma(s) |
eng |
Relação |
Proceedings of the American Mathematical Society |
Direitos |
openAccess |
Palavras-Chave | #Entire functions in the Laguerre-Pölya class #Riemann hypothesis #Turân determinants #Turân inequalities |
Tipo |
info:eu-repo/semantics/article |