Higher order turän inequalities


Autoria(s): Dimitrov, Dimitar K.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/12/1998

Resumo

The celebrated Turân inequalities P 2 n(x)-P n-x(x)P n+1(x) ≥ 0, x ε[-1,1], n ≥ 1, where P n(x) denotes the Legendre polynomial of degree n, are extended to inequalities for sums of products of four classical orthogonal polynomials. The proof is based on an extension of the inequalities γ 2 n - γ n-1γ n+1 ≥ 0, n ≥ 1, which hold for the Maclaurin coefficients of the real entire function ψ in the Laguerre-Pölya class, ψ(x) = ∑ ∞ n=0 γ nx n / n!. ©1998 American Mathematical Society.

Formato

2033-2037

Identificador

http://dx.doi.org/10.1090/S0002-9939-98-04438-4

Proceedings of the American Mathematical Society, v. 126, n. 7, p. 2033-2037, 1998.

0002-9939

http://hdl.handle.net/11449/65596

10.1090/S0002-9939-98-04438-4

WOS:000074694200020

2-s2.0-22044435255

2-s2.0-22044435255.pdf

Idioma(s)

eng

Relação

Proceedings of the American Mathematical Society

Direitos

openAccess

Palavras-Chave #Entire functions in the Laguerre-Pölya class #Riemann hypothesis #Turân determinants #Turân inequalities
Tipo

info:eu-repo/semantics/article