Schur-Szegö composition of entire functions


Autoria(s): Dimitrov, Dimitar Kolev; Kostov, Vladimir Petrov
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/04/2015

27/04/2015

2012

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP: 2009/13832-9

For any pair of algebraic polynomials A(x) = n k=0 n k akxk and B(x) = n k=0 n k bkxk, their Schur-Szego composition is defined by ˝ (A ∗ n B)(x) = n k=0 n k akbkxk. Motivated by some recent results which show that every polynomial P(x) of degree n with P(−1) = 0 can be represented as Ka1 ∗ n ··· ∗ n Kan−1 with Ka := (x + 1)n−1(x + a), we introduce the notion of Schur-Szego composition of ˝ formal power series and study its properties in the case when the series represents an entire function. We also concentrate on the special case of composition of functions of the form exP(x), where P(x) is an algebraic polynomial and investigate its properties in detail.

Formato

475-491

Identificador

http://link.springer.com/article/10.1007/s13163-011-0078-3

Revista Matemática Complutense, v. 25, p. 475-491, 2012.

1139-1138

http://hdl.handle.net/11449/122755

1681267716971253

Idioma(s)

eng

Relação

Revista Matemática Complutense

Direitos

closedAccess

Palavras-Chave #Schur-Szego composition #Entire functions #Hyperbolic polynomials #Laguerre-Pólya class
Tipo

info:eu-repo/semantics/article