977 resultados para Derivative spectrophotometry
Resumo:
O losartano potássico é um agente anti-hipertensivo não peptídico, que exerce sua ação por bloqueio específico dos receptores da angiotensina II. Este trabalho propôs a validação e aplicação de métodos analíticos orientados ao controle de qualidade de losartano potássico 50 mg na forma farmacêutica cápsula, utilizando a espectrofotometria direta e derivada de primeira ordem na região do UV. Baseado nas características espectrofotométricas de losartano potássico, um sinal a 205 nm do espectro de ordem zero e um sinal a 234 nm do espectro de primeira derivada foram adequados para a quantificação. Os resultados foram usados para comparar essas duas técnicas instrumentais. O coeficiente de correlação entre as respostas e as concentrações de losartano potássico na faixa de 3,0-7,0 mg L-1 e 6,0-14,0 mg L-1 para espectrofotometria direta e derivada de primeira ordem em solução aquosa, respectivamente, foi de (r) of 0,9999 para ambos os casos. Os métodos foram aplicados para quantificação de losartano potássico em cápsulas obtidas de farmácias de manipulação locais e demonstraram ser eficientes, fáceis de aplicar e de baixo custo. Além disso, não necessitam de reagentes poluentes e requerem equipamentos economicamente viáveis.
Resumo:
The purpose of this study is to develop and validate a dissolution test for fluconazole, an antifungal used for the treatment of superficial, cutaneous, and cutaneomucous infections caused by Candida species, in capsules dosage form. Techniques by HPLC and UV first derivative spectrophotometry (UV-FDS) were selected for quantitative evaluation. In the development of release profile, several conditions were evaluated. Dissolution test parameters were considered appropriate when a most discriminative release profile for fluconazole capsules was yielded. Dissolution test conditions for fluconazole capsules were 900 mL of HCl 0.1 M, 37 ± 0.5 °C using baskets with 50 rpm for 30 min of test. The developed HPLC and UV-FDS methods for the antifungal evaluation were selective and met requirements for an appropriate and validated method, according to ICH and USP requirements. Both methods can be useful in the registration process of new drugs or their renewal. For routine analysis application cost, simplicity, equipment, solvents, speed, and application to large or small workloads should be observed.
Resumo:
New rapid first-derivative spectrophotometric (UVDS) and a stability-indicating high performance liquid chromatographic (HPLC) methods were developed, validated and successfully applied in the analysis of loratadine (LT) in tablets and syrups. In the UVDS method, 0.1 M HCl was used as solvent. The measurements were made at 312.4 nm in the first order derivative spectra. The HPLC method was carried out on a RP-18 column with a mobile phase composed of methanol-water-tetrahydrofuran (50:30:20, v/v/v). UV detection was made at 247 nm. For HPLC methods the total analysis time was <3min, adequate for routine quality control of tablets and syrups containing loratadine.
Resumo:
High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.
Resumo:
A derivative spectrophotometric method was validated for quantification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity, precision, accuracy, recovery, detection (LOD) and quantification (LOQ) limits were established for method validation. First-derivative at 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging from 1.25 to 40.0 µg/mL (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD was 0.08 µg/mL and LOQ, 0.25 µg/mL. Thus, the proposed method proved to be easy, low cost, and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.
Resumo:
Aims: Darunavir is widely used in HIV/AIDS therapy. It is a HIV protease inhibitor that has excellent efficacy against the virus. The aim of this study is to develop and validate an analytical method fast and free of interferences for determination of darunavir ethanolate as raw material and tablet dosage form. Methodology: As the formulation excipients show high interference in darunavir determination by a direct UV absorption measurement a derivative spectrophotometry was applied. A selective, easy and fast method was achieved employing simple and cheap instrumentation by using first-order derivative spectrophotometry. Results: The first-derivation of spectrum of the drug measured between 200 and 400 nm allowed identification of the analyte and showed absence of placebo interference. The assay was based on the absorbance at 276nm. The linear concentration range was established from 11 to 21 μg/mL. The intra-day and inter-day precision expressed as RSD was 0.06% and 3.75% respectively with mean recovery of 99.84%. Conclusion: The proposed analytical method is able to quantify darunavir as raw material and tablets and can be used routinely by any laboratory applying a spectrophotometer with a derivative accessory. The great difference of the method proposed here is that it proves to be free of placebo interferences as well as simple, fast and low cost.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A derivative spectrophotometric method was validated for quzintification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity. precision, accuracy, recovery. detection (LOD) and quantification (LOQ) Inuits were established for method validation. First-derivative it 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging front 1.25 to 40.0 mu g/mL. (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD) was 0.08 mu g/mL and LOQ. 0.25 mu g/mL. Thus. the proposed method proved to be easy. low cost. and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.
Resumo:
A derivative spectrophotometric method was validated for quantification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity, precision, accuracy, recovery, detection (LOD) and quantification (LOQ) limits were established for method validation. First-derivative at 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging from 1.25 to 40.0 µg/mL (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD was 0.08 µg/mL and LOQ, 0.25 µg/mL. Thus, the proposed method proved to be easy, low cost, and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.
Resumo:
Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).
Resumo:
A very simple spectrophotometric method is described for resolving binary mixture of the food colorants Sunset Yellow (INS 110) and Tartrazine Yellow (INS 102) by using the first derivative spectra with measurements at zero-crossing wavelengths. Before the spectrophotometric measurements, the dyes were sorbed onto polyurethane foam and recovered in N,N-dimethilformamide. Commercial food products (gelatine and juice powder) were analysed by using the proposed method and the HPLC technique. The results are in very good agreement and the differences between the methods is not statistically important. Therefore, the first-order derivative spectrophotometric method is accurate, precise, reliable and could be applied to the routine analysis of food samples.
Resumo:
The aim of this work is to develop and validate a dissolution test for glibenclamide tablets. Optimal conditions to carry out the dissolution test are 500 mL of phosphate buffer at pH 8.0, paddles at 75 rpm stirring speed, time test set to 60 min and using equipment with six vessels. The derivative UV spectrophotometric method for determination of glibenclamide released was developed, validated and compared with the HPLC method. The UVDS method presents linearity (r² = 0.9999) in the concentration range of 5-14 µg/mL. Precision and recoveries were 0.42% and 100.25%, respectively. The method was applied to three products commercially available on the Brazilian market.
Resumo:
In this work is proposed, a simple experiment for the simultaneous determination of losartan (L) and hydrochlorothiazide (H) in synthetic and real samples by derivative spectrophotometry technique. For the students it is relevant to know this technique for simultaneous determinations of drugs, allowing that the students recognize that this technique is simple, rapid and applicable to quality control. This experimental work, it is proposed in order to being applied to undergraduates into laboratories of analytical chemistry. Furthermore, it is given the integration of the theoretical knowledge with the experimental work; this correlation is of interest for the students.
Resumo:
Simple, sensitive and accurate spectrophotometric derivative methods were developed for the simultaneous determination of olanzapine and fluoxetine hydrochloride in pharmaceutical formulations by derivative spectrophotometry. On all orders of derivative studied, the linear response range was 10 to 60 mg L-1, with limit of quantitation (LoQ) ranging from 0.73 to 1.49 mg L-1 for fluoxetine hydrochloride and from 0.18 to 0.96 mg L-1 for olanzapine. The best orders for derivative analyses showed recoveries ranging from 99 to 103% and from 98 to 100%, and inter-day accuracy < 2.1% and < 2.8%, for fluoxetine hydrochloride and olanzapine, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)