962 resultados para COUPLED-CLUSTER SINGLE
Resumo:
Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.
Resumo:
Coupled-cluster theory in its single-reference formulation represents one of the most successful approaches in quantum chemistry for the description of atoms and molecules. To extend the applicability of single-reference coupled-cluster theory to systems with degenerate or near-degenerate electronic configurations, multireference coupled-cluster methods have been suggested. One of the most promising formulations of multireference coupled cluster theory is the state-specific variant suggested by Mukherjee and co-workers (Mk-MRCC). Unlike other multireference coupled-cluster approaches, Mk-MRCC is a size-extensive theory and results obtained so far indicate that it has the potential to develop to a standard tool for high-accuracy quantum-chemical treatments. This work deals with developments to overcome the limitations in the applicability of the Mk-MRCC method. Therefore, an efficient Mk-MRCC algorithm has been implemented in the CFOUR program package to perform energy calculations within the singles and doubles (Mk-MRCCSD) and singles, doubles, and triples (Mk-MRCCSDT) approximations. This implementation exploits the special structure of the Mk-MRCC working equations that allows to adapt existing efficient single-reference coupled-cluster codes. The algorithm has the correct computational scaling of d*N^6 for Mk-MRCCSD and d*N^8 for Mk-MRCCSDT, where N denotes the system size and d the number of reference determinants. For the determination of molecular properties as the equilibrium geometry, the theory of analytic first derivatives of the energy for the Mk-MRCC method has been developed using a Lagrange formalism. The Mk-MRCC gradients within the CCSD and CCSDT approximation have been implemented and their applicability has been demonstrated for various compounds such as 2,6-pyridyne, the 2,6-pyridyne cation, m-benzyne, ozone and cyclobutadiene. The development of analytic gradients for Mk-MRCC offers the possibility of routinely locating minima and transition states on the potential energy surface. It can be considered as a key step towards routine investigation of multireference systems and calculation of their properties. As the full inclusion of triple excitations in Mk-MRCC energy calculations is computational demanding, a parallel implementation is presented in order to circumvent limitations due to the required execution time. The proposed scheme is based on the adaption of a highly efficient serial Mk-MRCCSDT code by parallelizing the time-determining steps. A first application to 2,6-pyridyne is presented to demonstrate the efficiency of the current implementation.
Resumo:
Diese Dissertation demonstriert und verbessert die Vorhersagekraft der Coupled-Cluster-Theorie im Hinblick auf die hochgenaue Berechnung von Moleküleigenschaften. Die Demonstration erfolgt mittels Extrapolations- und Additivitätstechniken in der Single-Referenz-Coupled-Cluster-Theorie, mit deren Hilfe die Existenz und Struktur von bisher unbekannten Molekülen mit schweren Hauptgruppenelementen vorhergesagt wird. Vor allem am Beispiel von cyclischem SiS_2, einem dreiatomigen Molekül mit 16 Valenzelektronen, wird deutlich, dass die Vorhersagekraft der Theorie sich heutzutage auf Augenhöhe mit dem Experiment befindet: Theoretische Überlegungen initiierten eine experimentelle Suche nach diesem Molekül, was schließlich zu dessen Detektion und Charakterisierung mittels Rotationsspektroskopie führte. Die Vorhersagekraft der Coupled-Cluster-Theorie wird verbessert, indem eine Multireferenz-Coupled-Cluster-Methode für die Berechnung von Spin-Bahn-Aufspaltungen erster Ordnung in 2^Pi-Zuständen entwickelt wird. Der Fokus hierbei liegt auf Mukherjee's Variante der Multireferenz-Coupled-Cluster-Theorie, aber prinzipiell ist das vorgeschlagene Berechnungsschema auf alle Varianten anwendbar. Die erwünschte Genauigkeit beträgt 10 cm^-1. Sie wird mit der neuen Methode erreicht, wenn Ein- und Zweielektroneneffekte und bei schweren Elementen auch skalarrelativistische Effekte berücksichtigt werden. Die Methode eignet sich daher in Kombination mit Coupled-Cluster-basierten Extrapolations-und Additivitätsschemata dafür, hochgenaue thermochemische Daten zu berechnen.
Resumo:
This thesis details the development of quantum chemical methods for the accurate theoretical description of molecular systems with a complicated electronic structure. In simple cases, a single Slater determinant, in which the electrons occupy a number of energetically lowest molecular orbitals, offers a qualitatively correct model. The widely used coupled-cluster method CCSD(T) efficiently includes electron correlation effects starting from this determinant and provides reaction energies in error by only a few kJ/mol. However, the method often fails when several electronic configurations are important, as, for instance, in the course of many chemical reactions or in transition metal compounds. Internally contracted multireference coupled-cluster methods (ic-MRCC methods) cure this deficiency by using a linear combination of determinants as a reference function. Despite their theoretical elegance, the ic-MRCC equations involve thousands of terms and are therefore derived by the computer. Calculations of energy surfaces of BeH2, HF, LiF, H2O, N2 and Be3 unveil the theory's high accuracy compared to other approaches and the quality of various hierarchies of approximations. New theoretical advances include size-extensive techniques for removing linear dependencies in the ic-MRCC equations and a multireference analog of CCSD(T). Applications of the latter method to O3, Ni2O2, benzynes, C6H7NO and Cr2 underscore its potential to become a new standard method in quantum chemistry.
Resumo:
Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (C-13)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 mu M. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.
Resumo:
Coupled-Cluster-Berechnungen von Parametern derKernspin-Resonanz-Spektroskopie Dissertationsschrift von Alexander A.Auer, Mainz 2002 Im Rahmen einer Studie der Berechnung von 13C-Verschiebungenwerdendie Einfluesse von Elektronenkorrelation, Basissatz,Gleichgewichtsgeometrie sowie Schwingungs- und Rotationseffekten separat betrachtet.Dabei zeigt sich, dass dieCoupled-Cluster-Singles-Doubles-Methode mitstoerungstheoretischer Behandlung der Dreifachanregungen(CCSD(T)) mit entsprechend grossen Basissaetzen bei Beruecksichtigung derNullpunktsschwingungseffekte Ergebnisse mit ca. 1 ppm Abweichung zum Experiment liefert. Eine Analyse der Elektronenkorrelationseffekte beiCoupled-Cluster- (CC-) Berechnungen von indirekten Spin-Spin-Kopplungskonstanten zeigt, dassCC-Methoden mit Hartree-Fock-Orbitalrelaxation zur Berechnung derKopplungskonstanten ungeeignet sind. Eine Loesung ist die Verwendung unrelaxierter CC-Methoden,in denendie HF-Orbitalrelaxation aus der Berechnung der gestoertenWellenfunktion ausgeschlossen wird. Full-Configuration-Interaction-Berechnungen fuer Borhydridzeigen,dass auf CC-Singles-Doubles-Niveau (CCSD) 94% und aufCC-Singles-Doubles-Triples-Niveau (CCSDT) 99% der Korrelationseffekte beschrieben werden. Weiterhin istdie Beruecksichtigung der Nullpunktsschwingung sowie die Wahl eines ausreichend grossen Basissatzes wichtig. Auf Grundlage der vorangegangenen Studien werden im letztenTeil zwei Beispiele zur Anwendung hochgenauer Berechnungen vonNMR-Parametern vorgestellt.Im Rahmen einer Studie der Spin-Spin-Kopplungskonstanten vonCyclopentan wird eine Karplus-Beziehungzwischen den Kopplungskonstanten und der Konformation desMolekuels aufgestellt, desweiteren werden die NMR-Parameter von Methylidinphosphanuntersucht.
Resumo:
Spin-Restricted Coupled-Cluster-Theorie fuer offenschaligeZustaende Die Berechnung von Energien und Eigenschaften offenschaligerAtome undMolekuele mit Hilfe der hochgenauenCoupled-Cluster-(CC)-Theoriewar bisher mit einem - im Vergleich zur BerechnunggeschlossenschaligerZustaende - erhoehten Rechenaufwand und der sogenannten'Spinkontamination' behaftet. Um diesen Problemenentgegenzuwirken,stellten P.G.Szalay und J.Gauss die 'Spin-RestrictedCoupled-Cluster-Theorie' vor. Im Rahmen dieser Arbeit wird die urspruenglich aufDublett-Zustaendebeschraenkte Theorie so verallgemeinert, dass jederbeliebige Spinzustandmit einem einheitlichen Satz von Gleichungen beschriebenwerden kann. Dadie Moller-Plesset-(MP)-Stoerungstheorie bei der BerechnungoffenschaligerZustaende mit aehnlichen Problemen behaftet ist, wirddarueberhinaus dieSpin-Restricted-(SR)-MP-Stoerungstheorie zweiter und dritterOrdnungeingefuehrt. Um Molekueleigenschaften berechnen zu koennen,werdenanalytische Ableitungen der Energie sowohl fuer den SR-CC-als auch denSR-MP-Ansatz hergeleitet. Bei den folgenden Testrechnungenstellt sichheraus, dass sowohl SR-CC- als auch SR-MP-Ansaetze diegleiche Genauigkeitbieten wie konventionelle CC- und MP-Ansaetze. Dabei sinddieSpinerwartungswerte der SR-CC-Wellenfunktionen identisch mitdem exaktenWert. Im Rahmen der Testrechnungen stellt sich heraus, dassder SR-CC-Ansatz nicht 'size-konsistent', der numerische Fehler abervernachlaessigbar klein ist. Abschliessend werden dieHintergruende derfehlenden 'Size-Konsistenz' diskutiert.
Resumo:
Coupled-Cluster-Theorie (CC) ist in der heutigen Quantenchemie eine der erfolgreichsten Methoden zur genauen Beschreibung von Molekülen. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, daß neben den Berechnungen von Energien eine Reihe von Eigenschaften wie Strukturparameter, Schwingungsfrequenzen und Rotations-Schwingungs-Parameter kleiner und mittelgrofler Moleküle zuverlässig und präzise vorhergesagt werden können. Im ersten Teil der Arbeit wird mit dem Spin-adaptierten Coupled-Cluster-Ansatz (SA-CC) ein neuer Weg zur Verbesserung der Beschreibung von offenschaligen Systemen vorgestellt. Dabei werden zur Bestimmung der unbekannten Wellenfunktionsparameter zusätzlich die CC-Spingleichungen gelöst. Durch dieses Vorgehen wird gewährleistet, daß die erhaltene Wellenfunktion eine Spineigenfunktion ist. Die durchgeführte Implementierung des Spin-adaptierten CC-Ansatzes unter Berücksichtigung von Einfach- und Zweifachanregungen (CCSD) für high-spin Triplett-Systeme wird ausführlich erläutert. Im zweiten Teil werden CC-Additionsschemata vorgestellt, die auf der Annahme der Additivität von Elektronenkorrelations- und Basissatzeffekten basieren. Die etablierte Vorgehensweise, verschiedene Beiträge zur Energie mit an den Rechenaufwand angepassten Basissätzen separat zu berechnen und aufzusummieren, wird hier auf Gradienten und Kraftkonstanten übertragen. Für eine Beschreibung von Bindungslängen und harmonischen Schwingungsfrequenzen mit experimenteller Genauigkeit ist die Berücksichtigung von Innerschalenkorrelationseffekten sowie Dreifach- und Vierfachanregungen im Clusteroperator der Wellenfunktion nötig. Die Basissatzkonvergenz wird dabei zusätzlich mit Extrapolationsmethoden beschleunigt. Die quantitative Vorhersage der Bindungslängen von 17 kleinen Molekülen, aufgebaut aus Atomen der ersten Langperiode, ist so mit einer Genauigkeit von wenigen Hundertstel Pikometern möglich. Für die Schwingungsfrequenzen dieser Moleküle weist das CC-Additionsschema basierend auf den berechneten Kraftkonstanten im Vergleich zu experimentellen Ergebnissen einen mittleren absoluten Fehler von 3.5 cm-1 und eine Standardabweichung von 2.2 cm-1 auf. Darüber hinaus werden zur Unterstützung von experimentellen Untersuchungen berechnete spektroskopische Daten einiger größerer Moleküle vorgelegt. Die in dieser Arbeit vorgestellten Untersuchungen zur Isomerisierung von Dihalogensulfanen XSSX (X= F, Cl) oder die Berechnung von Struktur- und Rotations-Schwingungs-Parametern für die Moleküle CHCl2F und CHClF2 zeigen, daß bereits störungstheoretische CCSD(T)-Näherungsmethoden qualitativ gute Vorhersagen experimenteller Resultate liefern. Desweiteren werden Diskrepanzen von experimentellen und berechneten Bindungsabständen bei den Molekülen Borhydrid- und Carbenylium durch die Berücksichtigung des elektronischen Beitrages zum Trägheitsmoment beseitigt.
Resumo:
Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.
Resumo:
Quantenchemische Untersuchungen von Atomen und Molekülen haben in den letzten Jahren durch die systematische Erweiterung der Methoden und Computerresourcen zunehmend für die Interpretation und Vorhersage experimenteller Ergebnisse an Bedeutung gewonnen. Relativistische Effekte in der Chemie werden zum Beispiel für die gelbe Farbe von Gold und den flüssigen Aggregatzustand von Quecksilber verantwortlich gemacht und müssen daher in quantenchemischen Rechnungen berücksichtigt werden. Relativistische Effekte sind bei leichten Elementen oft so klein, daß sie in vielen quantenchemischen Betrachtungen vernachlässigt werden. Dennoch sind es gerade diese Beiträge, die verbleibende Abweichungen von noch so genauen nichtrelativistischen Rechnungen von ebenso genauen experimentellen Ergebnissen ausmachen können. Relativistische Effekte können auf viele Arten in quantenchemischen Rechnungen berücksichtigt werden. Eine Möglichkeit ist die Störungstheorie. Ein derartiger Ansatz ist die Mass-velocity-Darwin-Näherung, ein anderer die Direkte Störungstheorie. Hier entspricht die relativistische Energiekorrektur erster Ordnung der ersten Ableitung der Energie nach einem relativistischen Störparameter. Für eine Bestimmung der Gleichgewichtsstruktur eines Moleküls müssen die Kräfte auf die Atomkerne bestimmt werden. Diese entsprechen einer ersten Ableitung der Gesamtenergie nach den Kernkoordinaten. Eine Einbeziehung der relativistischen Effekte auf diese Kräfte erfordert daher die gemischte zweite Ableitung der Energie nach dem relativistischen Störparameter und den Kernkoordinaten. Diese relativistischen Korrekturen wurden in dem quantenchemischen Programmpaket ACES2 implementiert. Ein Resultat dieser Arbeit ist, daß nun erstmalig eine Implementierung analytischer Gradienten für die Berechnung relativistischer Korrekturen zu Strukturparametern mit Hilfe der relativistischen Störungstheorie für den Coupled-Cluster-Ansatz bereit steht. Die Coupled-Cluster-Theorie eignet sich besonders gut für die hochgenaue Vorhersage von molekularen Eigenschaften, wie der Gleichgewichtsstruktur. Im Rahmen dieser Arbeit wurde die Basissatzabhängigkeit der relativistischen Beiträge zu Energien, Strukturparametern und harmonischen Schwingungsfrequenzen im Detail untersucht. Für die hier untersuchten Moleküle sind die relativistischen Effekte und Effekte aufgrund der Elektronenkorrelation nicht additiv, so verkürzt die Berücksichtigung relativistischer Effekte bei Hartree-Fock-Rechnungen die Bindung in den Hydrogenhalogeniden, während die Einbeziehung der Elektronenkorrelation durch CCSD(T)-Rechnungen zu einer verlängerten Bindung im Fluorwasserstoff und weniger stark ausgeprägten Korrekturen im Chlor- und Bromwasserstoff führt. Für die anderen hier untersuchten mehratomigen Moleküle findet sich kein einheitlicher Trend; dies unterstreicht die Notwendigkeit expliziter Rechnungen. Damit steht ein leistungsfähiges und vielseitiges Werkzeug für die Berechnung relativistischer Korrekturen auf verschiedenste molekulare Eigenschaften zur Verfügung, das mit modernen, systematisch verbesserbaren quantenchemischen Methoden verknüpft ist. Hiermit ist es möglich, hochgenaue Rechnungen zur Vorhersage und Interpretation von Experimenten durchzuführen.
Resumo:
In der vorliegenden Arbeit wird die Theorie der analytischen zweiten Ableitungen für die EOMIP-CCSD-Methode formuliert sowie die durchgeführte Implementierung im Quantenchemieprogramm CFOUR beschrieben. Diese Ableitungen sind von Bedeutung bei der Bestimmung statischer Polarisierbarkeiten und harmonischer Schwingungsfrequenzen und in dieser Arbeit wird die Genauigkeit des EOMIP-CCSD-Ansatzes bei der Berechnung dieser Eigenschaften für verschiedene radikalische Systeme untersucht. Des Weiteren können mit Hilfe der ersten und zweiten Ableitungen vibronische Kopplungsparameter berechnet werden, welche zur Simulation von Molekülspektren in Kombination mit dem Köppel-Domcke-Cederbaum (KDC)-Modell - in der Arbeit am Beispiel des Formyloxyl (HCO2)-Radikals demonstriert - benötigt werden.rnrnDer konzeptionell einfache EOMIP-CC-Ansatz wurde gewählt, da hier die Wellenfunktion eines Radikalsystems ausgehend von einem stabilen geschlossenschaligen Zustand durch die Entfernung eines Elektrons gebildet wird und somit die Problematik der Symmetriebrechung umgangen werden kann. Im Rahmen der Implementierung wurden neue Programmteile zur Lösung der erforderlichen Gleichungen für die gestörten EOMIP-CC-Amplituden und die gestörten Lagrange-Multiplikatoren zeta zum Quantenchemieprogramm CFOUR hinzugefügt. Die unter Verwendung des Programms bestimmten Eigenschaften werden hinsichtlich ihrer Leistungsfähigkeit im Vergleich zu etablierten Methoden wie z.B. CCSD(T) untersucht. Bei der Berechnung von Polarisierbarkeiten und harmonischen Schwingungsfrequenzen liefert die EOMIP-CCSD-Theorie meist gute Resultate, welche nur wenig von den CCSD(T)-Ergebnissen abweichen. Einzig bei der Betrachtung von Radikalen, für die die entsprechenden Anionen nicht stabil sind (z.B. NH2⁻ und CH3⁻), liefert der EOMIP-CCSD-Ansatz aufgrund methodischer Nachteile keine aussagekräftige Beschreibung. rnrnDie Ableitungen der EOMIP-CCSD-Energie lassen sich auch zur Simulation vibronischer Kopplungen innerhalb des KDC-Modells einsetzen.rnZur Kopplung verschiedener radikalischer Zustände in einem solchen Modellpotential spielen vor allem die Ableitungen von Übergangsmatrixelementen eine wichtige Rolle. Diese sogenannten Kopplungskonstanten können in der EOMIP-CC-Theorie besonders leicht definiert und berechnet werden. Bei der Betrachtung des Photoelektronenspektrums von HCO2⁻ werden zwei Alternativen untersucht: Die vertikale Bestimmung an der Gleichgewichtsgeometrie des HCO2⁻-Anions und die Ermittlung adiabatischer Kraftkonstanten an den Gleichgewichtsgeometrien des Radikals. Lediglich das adiabatische Modell liefert bei Beschränkung auf harmonische Kraftkonstanten eine qualitativ sinnvolle Beschreibung des Spektrums. Erweitert man beide Modelle um kubische und quartische Kraftkonstanten, so nähern sich diese einander an und ermöglichen eine vollständige Zuordnung des gemessenen Spektrums innerhalb der ersten 1500 cm⁻¹. Die adiabatische Darstellung erreicht dabei nahezu quantitative Genauigkeit.
Resumo:
In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]
Resumo:
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Resumo:
Ankylosing spondylitis (AS) is a common and highly heritable inflammatory arthropathy. Although the gene HLA-B27 is almost essential for the inheritance of the condition, it alone is not sufficient to explain the pattern of familial recurrence of the disease. We have previously demonstrated suggestive linkage of AS to chromosome 2q13, a region containing the interleukin 1 (IL-1) family gene cluster, which includes several strong candidates for involvement in the disease. In the current study, we describe strong association and transmission of IL-1 family gene cluster single-nucleotide polymorphisms and haplotypes with AS.