924 resultados para Associative algebras


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove an analogue of Magnus theorem for associative algebras without unity over arbitrary fields. Namely, if an algebra is given by $n+k$ generators and $k$ relations and has an $n$-element system of generators, then this algebra is a free algebra of rank $n$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we apply the method of functional identities to the study of group gradings by an abelian group G on simple Jordan algebras, under very mild restrictions on the grading group or the base field of coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

∗The first author was partially supported by MURST of Italy; the second author was par- tially supported by RFFI grant 99-01-00233.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic not equal 2 is solvable. We prove that every commutative finite-dimensional algebra u over a field F of characteristic not equal 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We begin a study of torsion theories for representations of finitely generated algebras U over a field containing a finitely generated commutative Harish-Chandra subalgebra Gamma. This is an important class of associative algebras, which includes all finite W-algebras of type A over an algebraically closed field of characteristic zero, in particular, the universal enveloping algebra of gl(n) (or sl(n)) for all n. We show that any Gamma-torsion theory defined by the coheight of the prime ideals of Gamma is liftable to U. Moreover, for any simple U-module M, all associated prime ideals of M in Spec Gamma have the same coheight. Hence, the coheight of these associated prime ideals is an invariant of a given simple U-module. This implies the stratification of the category of U-modules controlled by the coheight of the associated prime ideals of Gamma. Our approach can be viewed as a generalization of the classical paper by Block (1981) [4]; it allows, in particular, to study representations of gl(n) beyond the classical category of weight or generalized weight modules. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Partially supported by grant RFFI 98-01-01020.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The topic of this thesis is the application of distributive laws between comonads to the theory of cyclic homology. The work herein is based on the three papers 'Cyclic homology arising from adjunctions', 'Factorisations of distributive laws', and 'Hochschild homology, lax codescent,and duplicial structure', to which the current author has contributed. Explicitly, our main aims are: 1) To study how the cyclic homology of associative algebras and of Hopf algebras in the original sense of Connes and Moscovici arises from a distributive law, and to clarify the role of different notions of bimonad in this generalisation. 2) To extend the procedure of twisting the cyclic homology of a unital associative algebra to any duplicial object defined by a distributive law. 3) To study the universality of Bohm and Stefan’s approach to constructing duplicial objects, which we do in terms of a 2-categorical generalisation of Hochschild (co)homology. 4) To characterise those categories whose nerve admits a duplicial structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe bases of free commutative Moufang loop with seven generators and calculate the order of this loop. (c) 2011 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We work to find a basis of identities for an octonion algebra modulo an associator ideal of a free alternative algebra, or, in other words, a basis for an associative replica of an ideal of identities of an octonion algebra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In [19], [24] we introduced a family of self-similar nil Lie algebras L over fields of prime characteristic p > 0 whose properties resemble those of Grigorchuk and Gupta-Sidki groups. The Lie algebra L is generated by two derivations v(1) = partial derivative(1) + t(0)(p-1) (partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...))))), v(2) = partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...)))) of the truncated polynomial ring K[t(i), i is an element of N vertical bar t(j)(p) =0, i is an element of N] in countably many variables. The associative algebra A generated by v(1), v(2) is equipped with a natural Z circle plus Z-gradation. In this paper we show that for p, which is not representable as p = m(2) + m + 1, m is an element of Z, the algebra A is graded nil and can be represented as a sum of two locally nilpotent subalgebras. L. Bartholdi [3] andYa. S. Krylyuk [15] proved that for p = m(2) + m + 1 the algebra A is not graded nil. However, we show that the second family of self-similar Lie algebras introduced in [24] and their associative hulls are always Z(p)-graded, graded nil, and are sums of two locally nilpotent subalgebras.