COMMUTATIVE FINITE-DIMENSIONAL ALGEBRAS SATISFYING x(x(xy))=0 ARE NILPOTENT


Autoria(s): FERNANDEZ, Juan C. Gutierrez
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic not equal 2 is solvable. We prove that every commutative finite-dimensional algebra u over a field F of characteristic not equal 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras.

Identificador

COMMUNICATIONS IN ALGEBRA, v.37, n.10, p.3760-3776, 2009

0092-7872

http://producao.usp.br/handle/BDPI/30607

10.1080/00927870802502944

http://dx.doi.org/10.1080/00927870802502944

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS INC

Relação

Communications in Algebra

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS INC

Palavras-Chave #Commutative #Nilalgebra #Solvable #POWER-ASSOCIATIVE NILALGEBRAS #Mathematics
Tipo

article

original article

publishedVersion