COMMUTATIVE FINITE-DIMENSIONAL ALGEBRAS SATISFYING x(x(xy))=0 ARE NILPOTENT
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic not equal 2 is solvable. We prove that every commutative finite-dimensional algebra u over a field F of characteristic not equal 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras. |
Identificador |
COMMUNICATIONS IN ALGEBRA, v.37, n.10, p.3760-3776, 2009 0092-7872 http://producao.usp.br/handle/BDPI/30607 10.1080/00927870802502944 |
Idioma(s) |
eng |
Publicador |
TAYLOR & FRANCIS INC |
Relação |
Communications in Algebra |
Direitos |
restrictedAccess Copyright TAYLOR & FRANCIS INC |
Palavras-Chave | #Commutative #Nilalgebra #Solvable #POWER-ASSOCIATIVE NILALGEBRAS #Mathematics |
Tipo |
article original article publishedVersion |