Representation type of Jordan algebras


Autoria(s): KASHUBA, Iryna; OVSIENKO, Serge; SHESTAKOV, Ivan
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

The problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.

FAPESP[04/05979-6]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[04/02850-2]

FAPESP[05/60337-2]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq[304991/2006-6]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

ADVANCES IN MATHEMATICS, v.226, n.1, p.385-418, 2011

0001-8708

http://producao.usp.br/handle/BDPI/30696

10.1016/j.aim.2010.07.003

http://dx.doi.org/10.1016/j.aim.2010.07.003

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Advances in Mathematics

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Jordan algebra #Jordan bimodule #Representation type #Diagram of an algebra #Jordan tensor algebra #Quiver of an algebra #Mathematics
Tipo

article

original article

publishedVersion