889 resultados para Aprendizaje automático (Inteligencia artificial)
Resumo:
En la actualidad, existen un gran número de investigaciones que usan técnicas de aprendizaje automático basadas en árboles de decisión. Como evolución de dichos trabajos, se han desarrollado métodos que usan Multiclasificadores (Random forest, Boosting, Bagging) que resuelven los mismos problemas abordados con árboles de decisión simples, aumentando el porcentaje de acierto. El ámbito de los problemas resueltos tradicionalmente por dichas técnicas es muy variado aunque destaca la bio-informática. En cualquier caso, la clasificación siempre puede ser consultada a un experto considerándose su respuesta como correcta. Existen problemas donde un experto en la materia no siempre acierta. Un ejemplo, pueden ser las quinielas (1X2). Donde podemos observar que un conocimiento del dominio del problema aumenta el porcentaje de aciertos, sin embargo, predecir un resultado erróneo es muy posible. El motivo es que el número de factores que influyen en un resultado es tan grande que, en muchas ocasiones, convierten la predicción en un acto de azar. En este trabajo pretendemos encontrar un multiclasificador basado en los clasificadores simples más estudiados como pueden ser el Perceptrón Multicapa o Árboles de Decisión con el porcentaje de aciertos más alto posible. Con tal fin, se van a estudiar e implementar una serie de configuraciones de clasificadores propios junto a multiclasificadores desarrollados por terceros. Otra línea de estudio son los propios datos, es decir, el conjunto de entrenamiento. Mediante un estudio del dominio del problema añadiremos nuevos atributos que enriquecen la información que disponemos de cada resultado intentando imitar el conocimiento en el que se basa un experto. Los desarrollos descritos se han realizado en R. Además, se ha realizado una aplicación que permite entrenar un multiclasificador (bien de los propios o bien de los desarrollados por terceros) y como resultado obtenemos la matriz de confusión junto al porcentaje de aciertos. En cuanto a resultados, obtenemos porcentajes de aciertos entre el 50% y el 55%. Por encima del azar y próximos a los resultados de los expertos.
Resumo:
Presenta un sistema de aprendizaje gestionado por ordenador representando el papel del tutor personalizado para materias científicas como las Matemáticas, Física y Química. Comienza con un estudio del aprendizaje gestionado por ordenador y un análisis de los proyectos y productos europeos. Se estudia el aprendizaje en las áreas de Matemáticas, Física y Química para estudiantes de BUP y COU, centrándose en: principios, leyes y factores de eficacia, estrategias de parendizaje, aprendizaje intuitivo y automático. El proceso se divide en: entrenamiento, trabajo, repaso y examen dando nombre al sistema ETRE. La dinámica impuesta por el método implica la obtención automática de diagramas inferenciales, reglas y meta-reglas con la que fundamentar la actuación de un sistema experto capaz de ayudar y emular al profesor tutor humano.
Resumo:
Resumen basado en el de la publicación
Resumo:
Este estudio especifica las aplicaciones de redes semánticas para la resolución de problemas en el proceso de enseñanza-aprendizaje. El sistema está orientado de forma que el estudiante se ve involucrado en dicho proceso, permitiéndosele el control total de la sesión de entrenamiento con el objetivo añadido de estimular los procesos metacognitivos; es un sistema interactivo. Para el aprendizaje del estudiante se utiliza un modelo cognitivo como un tipo de diagrama de circuito del procedimiento. El diagnóstico y la presentación del problema contenido en el programa de ordenador, junto con los procedimientos de la instrucción, pueden presentarse direccionalmente de forma diferenciada para cada individuo.
Resumo:
El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.
Resumo:
La cantidad de datos biológicos y médicos que se produce hoy en día es enorme, y se podría decir que el campo de las ciencias de la vida forma parte ya del club del Big Data. Estos datos contienen información crucial que pueden ayudar a comprender mejor los mecanismos moleculares en los sistemas biológicos. Este conocimiento es fundamental para el progreso en el diagnóstico y en el tratamiento de las enfermedades. La Bioinformática, junto con la Biología Computacional, son disciplinas que se encargan de organizar, analizar e interpretar los datos procedentes de la Biología Molecular. De hecho, la complejidad y la heterogeneidad de los problemas biológicos requieren de un continuo diseño, implementación y aplicación de nuevos métodos y algoritmos. La minería de datos biológicos es una tarea complicada debido a la naturaleza heterogénea y compleja de dichos datos, siendo éstos muy dependientes de detalles específicos experimentales. Esta tesis se basa en el estudio de un problema biomédico complejo: la menor probabilidad de desarrollar algunos tipos de cáncer en pacientes con ciertos trastornos del sistema nervioso central (SNC) u otros trastornos neurológicos, y viceversa. Denominamos a esta condición como comorbilidad inversa. Desde el punto de vista médico, entender mejor las conexiones e interacciones entre cáncer y trastornos neurológicos podría mejorar la calidad de vida y el efecto de la asistencia médica de millones de personas en todo el mundo. Aunque la comorbilidad inversa ha sido estudiada a nivel médico, a través de estudios epidemiológicos, no se ha investigado en profundidad a nivel molecular...
Resumo:
Este informe trata de reunir en un documento la revisión bibliográfica realizada como base necesaria para el desarrollo de una tesis doctoral sobre las interacciones entre profesores y alumnos en las sesiones tradicionales de aprendizaje. Nuestra investigación se enmarca en los trabajos del grupo GALAN de la Facultad de Informática de San Sebastián de la UPV-EHU, que se dedica desde sus comienzos al desarrollo de herramientas educativas flexibles dotadas de comportamiento inteligente. En este informe presentamos un estudio bibliográfico de sistemas educativos en el ámbito de la inteligencia artificial. En particular se centra en los siguientes aspectos: tutores inteligentes, sistemas educativos para la web y herramientas de ayuda al profesor. Además se incluye una revisión del modelado de usuario y un estudio de técnicas para el análisis de datos.
Resumo:
Práctica donde se debe implementar el algoritmo alfa-beta de búsqueda en juegos para calcular la mejor jugada en el juego del Otelo.
Resumo:
En esta práctica se debe resolver el problema del crucigrama: encontrar las palabras que se ajustan a los huecos del crucigrama, tanto en horizontal como en vertical.
Resumo:
En esta práctica se desarrollará el funcionamiento de un sistema experto difuso. El alumno debe desarrollar y probar un sistema experto, utilizando lógica difusa, que sea capaz de estabilizar un péndulo invertido.
Resumo:
Este proyecto plantea el reto de realizar una aplicación web para la gestión y control de una casa rural desde dispositivos móviles como smartphones y tabletas, con una interfaz de propietario para gestionar de manera dinámica las diferentes partes de la misma, así como la inclusión de una zona de niños donde se aplicarán tecnologías de Inteligencia Artificial en concreto representación del conocimiento mediante “frames”, donde se permitirá a los usuarios realizar preguntas al sistema para intentar adivinar un árbol que previamente la propietaria de la casa rural habrá establecido. El objetivo no es elaborar un sistema experto, tarea que requeriría muchas más horas que las que corresponden a un proyecto de fin de carrera, sino comprobar la posibilidad de integración de estas herramientas en una aplicación orientada a dispositivos móviles. Se emplearán las funcionalidades de HTML5 para la inclusión de la “zona explorador” donde los niños podrán geo localizar árboles, así como su posterior búsqueda a modo de GPS donde los usuarios podrán ver donde está situado el árbol que desean buscar y su posición actual, la cual se irá actualizando automáticamente.
Resumo:
Tesis (Maestría en Ingeniería de Sistemas) UANL, 2012.
Resumo:
L' ús de tècniques de la intel·ligència artificial per a la detecció, la diagnòsi i control d' errors
Resumo:
Revisión del problema de la filosofía de la Inteligencia Artificial a la vista del Equilibrio refractivo. La revisión del problema se lleva a cabo para mostrar como "¿pueden pensar las máquinas?" sólo se ha evaluado en los terminos humanos. El equilibrio refractivo se plantea como una herramienta para definir conceptos de tal modo que la experiencia y los preceptos se encuentren en equilibrio, para con él construir una definición de pensar que no esté limitada exclusivamente a "pensar tal y como lo hacen los humanos".
Resumo:
El presente documento contiene el informe final del Proyecto de Aplicación Práctica (P.A.P) con el cual se culmina la Especialización en Docencia Universitaria y es pre-rrequisito para obtener el título correspondiente. El trabajo es una experiencia