995 resultados para ADSORPTION BEHAVIOR
Resumo:
Studies were undertaken to determine the adsorption behavior of α-cypermethrin [R)-α-cyano-3-phenoxybenzyl(1S)-cis- 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-α-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze α-cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time—24 hours for both cork (1–2 mm and 3–4 mm) and GAC. For the studied α-cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1–2 mm have the maximum amount of adsorbed α-cypermethrin (qm) (303 μg/g); followed by GAC (186 μg/g) and cork 3-4 mm (136 μg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the α-cypermethrin adsorption phenomena on GAC, while α-cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing α-cypermethrin from water.
Resumo:
The biological effects of chemical substitution of DNA bases triggered several investigations of their physicochemical properties This paper studies the adsorption behavior of a halogenated uracil, 5-fluorouracil (5FU). at the electrochemical interface of Au(111) and sulfuric acid solution. Upon modulation of the electric field across the interface, four distinct phases could be inferred by means of cyclic voltammetry (CV) At negative potentials relative to the SCE electrode, limited by the threshold of hydrogen evolution, no molecular species could be detected by scanning tunneling microscopy (STM) at the reconstructed Au(111)-(23 x root 3) surface, indicating that any physisorbed molecules are randomly distributed Incursion into more positive potentials increases the surface population but doer not form any two-dimensional (2D) physisorbed ordered structure Instead, we observed metastable structures that are only detectable. on surfaces with high defect density At sufficiently high positive potentials. limited by gold oxidation, the molecules are chemisorbed in a (3 x 2 root 3) ordered structure. with the aromatic ring perpendicular to the surface We report the densest chemisorbed monolayer for pyrimidine-derivative molecules (area per molecule 0 14 +/- 0 04 nm(2)). A comparison of the adsorption behavior of uracil derivatives has been made based on recent results of chemical substitution and solvent effects. We propose that pi-stacking is enhanced when halogens are incorporated in the uracil structure, in a similar fashion to what is observed in then crystal structure
Resumo:
Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of CaCl(2), Ca(NO(3))(2), CaSO(4), CaCO(3) and Ca(3)(PO(4))(2) on the flow behavior of xanthan gum solutions was investigated. Regardless the concentration and type of calcium salt used, xanthan solutions presented pseudoplastic behavior. The soluble salts (CaCl(2) and Ca(NO(3))(2)) induced the disordered state in the xanthan chains at concentration of 1.0 g/L or 10 g/L, decreasing the flow consistency index (K) values. At 100 g/L soluble salts K values were similar to those found for pure xanthan solutions, whereas at the same concentration of insoluble particles the K values increased 20%. The adsorption of xanthan gum onto Si/SiO(2) surfaces in the presence of calcium salts was investigated by ellipsometry and atomic force microscopy (AFM). The adsorbed layer of xanthan onto Si/SiO(2) consisted of two regions: (i) a thin acid resistant sublayer, where xanthan chains were like highly entangled fibers and (ii) a thick upperlayer, whose morphology was calcium salt dependent. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we report on the synthesis, characterization, and adsorption properties of the first 3-amino-1,2,4-triazole-modified porous silsesquioxane (ATPS). The isotherms of adsorption of MX2 (M = Cu(II), Co(II); X = Cl-, Br-, ClO4-) by ATPS were studied in ethanol and aqueous solutions at 298 K. The results showed that there is a good fit between the experimental data and the Langmuir isotherm. The adsorption capacity in both solvents followed the sequence Cu(II) >> Co(II). The lowest adsorption for Co(II) should be related to the largest hydration volume, which obstructs the adsorption capacity of the surface, and consequently causes a decrease in the number of cations adsorbed. For the salts with different anions the sequence was MCl2 > MBr2 > M(ClO4)2 in both solvents. The low affinity for M(ClO4)(2) toward the solid phase is a consequence of the poorer coordination ability of the ClO4-. Adsorptions from ethanol solutions were higher than those from aqueous solutions due to the higher polarity of water, which can more strongly solvate the solute and the basic sites on the surface. The following adsorption capacities (in mmol g(-1)) were determined: 0.24 (aq) and 0.84 (eth) for CuCl2, 0.09 (aq) and 0.16 (eth) for CuBr2, and 0.08 (aq) and 0.11 (eth) for Cu(ClO4)(2); 0.02 (aq) and 0.07 (eth) for CoCl2, 0.02 (aq) and 0.06 (eth) for CoBr2, and 0.01 (aq) and 0.05 (eth) for Co(ClO4)(2). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this thesis different approaches for the modeling and simulation of the blood protein fibrinogen are presented. The approaches are meant to systematically connect the multiple time and length scales involved in the dynamics of fibrinogen in solution and at inorganic surfaces. The first part of the thesis will cover simulations of fibrinogen on an all atom level. Simulations of the fibrinogen protomer and dimer are performed in explicit solvent to characterize the dynamics of fibrinogen in solution. These simulations reveal an unexpectedly large and fast bending motion that is facilitated by molecular hinges located in the coiled-coil region of fibrinogen. This behavior is characterized by a bending and a dihedral angle and the distribution of these angles is measured. As a consequence of the atomistic detail of the simulations it is possible to illuminate small scale behavior in the binding pockets of fibrinogen that hints at a previously unknown allosteric effect. In a second step atomistic simulations of the fibrinogen protomer are performed at graphite and mica surfaces to investigate initial adsorption stages. These simulations highlight the different adsorption mechanisms at the hydrophobic graphite surface and the charged, hydrophilic mica surface. It is found that the initial adsorption happens in a preferred orientation on mica. Many effects of practical interest involve aggregates of many fibrinogen molecules. To investigate such systems, time and length scales need to be simulated that are not attainable in atomistic simulations. It is therefore necessary to develop lower resolution models of fibrinogen. This is done in the second part of the thesis. First a systematically coarse grained model is derived and parametrized based on the atomistic simulations of the first part. In this model the fibrinogen molecule is represented by 45 beads instead of nearly 31,000 atoms. The intra-molecular interactions of the beads are modeled as a heterogeneous elastic network while inter-molecular interactions are assumed to be a combination of electrostatic and van der Waals interaction. A method is presented that determines the charges assigned to beads by matching the electrostatic potential in the atomistic simulation. Lastly a phenomenological model is developed that represents fibrinogen by five beads connected by rigid rods with two hinges. This model only captures the large scale dynamics in the atomistic simulations but can shed light on experimental observations of fibrinogen conformations at inorganic surfaces.
Resumo:
The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency – cost tradeoff is crucial for implementing new defluoridation technologies.
Resumo:
Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The characteristic topographical features (crystallite dimensions, surface morphology and roughness) of bioceramics may influence the adsorption of proteins relevant to bone regeneration. This work aims at analyzing the influence of two distinct nanophased hydroxyapatite (HA) ceramics, HA725 and HA1000 on fibronectin (FN) and osteonectin (ON) adsorption and MC3T3-E1 osteoblast adhesion and morphology. Both substrates were obtained using the same hydroxyapatite nanocrystals aggregates and applying the sintering temperatures of 725ºC and 1000ºC, respectively. The two proteins used in this work, FN as an adhesive glycoprotein and ON as a counter-adhesive protein, are known to be involved in the early stages of osteogenesis (cell adhesion, mobility and proliferation). The properties of the nanoHA substrates had an important role in the adsorption behavior of the two studied proteins and clearly affected the MC3T3- E1 morphology, distribution and metabolic activity. HA1000 surfaces presenting slightly larger grain size, higher root-mean-square roughness (Rq), lower surface area and porosity, allowed for higher amounts of both proteins adsorbed. These substrates also revealed increased number of exposed FN cell-binding domains as well as higher affinity for osteonectin. Regarding the osteoblast adhesion results, improved viability and cell number were found for HA1000 surfaces as compared to HA725 ones, independently of the presence or type of adsorbed protein. Therefore the osteoblast adhesion and metabolic activity seemed to be more sensitive to surfaces morphology and roughness than to the type of adsorbed proteins.
Resumo:
The adsorption behavior of several amphiphilic polyelectrolytes of poly(maleic anhydride-alt-styrene) functionalized with naphthyl and phenyl groups, onto amino-terminated silicon wafer has been studied by means of null- ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The maximum of adsorption, Gamma(plateau), varies with the ionic strength, the polyelectrolyte structure and the chain length. Values of Gamma(plateau) obtained at low and high ionic strengths indicate that the adsorption follows the ""screening-reduced adsorption"" regime. Large aggregates were detected in solution by means of dynamic light scattering and fluorescence measurements. However. AFM indicated the formation of smooth layers and the absence of aggregates. A model based on a two-step adsorption behavior was proposed. In the first one, isolated chains in equilibrium with the aggregates in solution adsorbed onto amino-terminated surface. The adsorption is driven by electrostatic interaction between protonated surface and carboxylate groups. This first layer exposes naphtyl or phenyl groups to the solution. The second layer adsorption is now driven by hydrophobic interaction between surface and chains and exposes carboxylate groups to the medium, which repel the forthcoming chain by electrostatic repulsion. Upon drying some hydrophobic naphtyl or phenyl groups might be oriented to the air, as revealed by contact angle measurements. Such amphiphilic polyelectrolyte layers worked well for the building-up of multilayers with chitosan. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Dendritic nucleic acids are highly branched and ordered molecular structures, possessing numerous single-stranded oligonucleotide arms, which hold great promise for enhancing the sensitivity of DNA biosensors. This article evaluates the interfacial behavior and redox activity of nucleic acid dendrimers at carbon paste electrodes, in comparison to DNA. Factors influencing the adsorption behavior, including the adsorption potential and time, solution conditions, or dendrimer concentration, are explored. The strong adsorption at the anodically pretreated carbon surface is exploited for an effective preconcentration step prior to the chronopotentiometric measurement of the surface species. Coupled with the numerous guanine oxidation sites, such stripping protocol offers remarkably low detection limits (e.g., 3 pM or 2.4 femtomole of the I-layer dendrimer following a 15 min accumulation). The new observations bear important implications upon future biosensing applications of nucleic dendrimers.
Resumo:
The adsorption behavior of the Tet-124 antimicrobial peptide and the Tet-124 peptide modified at the C- and N-terminus with the sequence glycine-3,4-dihydroxyphenylalanine-glycine (G-DOPA-G) on titanium surfaces was studied using quartz crystal micro balance with dissipation (QCM-D). At a low pH level (4.75) Tet-124 and Tet-124-G-DOPA-G form rigid layers. This is attributed to the electrostatic interactions of the positively charged lysine and arginine residues in the peptide sequence with the negatively charged titanium oxide layer. At an elevated pH level (6.9) Tet-124 shows a lower mass adsorption at the surface than Tet-124-G-DOPA-G. This is attributed to the interaction of the catechol due to the formation of complexes with the titanium oxide and titanium surface layer. The C terminal and N terminal modification with the sequence G-DOPA-G shows similar adsorption rate and mass adsorption coverage at saturation; however it is presented a more loosely layers on the G-DOPA-G-TeT-124. Fibroblast adhesion and the biocompatibility test of both the surfaces following modification with Tet-124-G-DOPA-G and the titanium alloy control showed similar results. In addition, no changes in the adhesion of E. coli bacteria due to the modification of the surface were detected.
Resumo:
Adsorption of ethylene and ethane on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers is studied in detail to investigate the packing efficiency, the two-dimensional critical temperature, and the variation of the isosteric heat of adsorption with loading and temperature. Here we used a Monte Carlo simulation method with a grand canonical Monte Carlo ensemble. A number of two-center Lennard-Jones (LJ) potential models are investigated to study the impact of the choice of potential models in the description of adsorption behavior. We chose two 2C-LJ potential models in our investigation of the (i) UA-TraPPE-LJ model of Martin and Siepmann (J. Phys. Chem. B 1998,102, 25692577) for ethane and Wick et al. (J. Phys. Chem. B 2000,104, 8008-8016) for ethylene and (ii) AUA4-LJ model of Ungerer et al. (J. Chem. Phys. 2000,112, 5499-5510) for ethane and Bourasseau et al. (J. Chem. Phys. 2003, 118, 3020-3034) for ethylene. These models are used to study the adsorption of ethane and ethylene on graphitized thermal carbon black. It is found that the solid-fluid binary interaction parameter is a function of adsorbate and temperature, and the adsorption isotherms and heat of adsorption are well described by both the UA-TraPPE and AUA models, although the UA-TraPPE model performs slightly better. However, the local distributions predicted by these two models are slightly different. These two models are used to explore the two-dimensional condensation for the graphitized thermal carbon black, and these values are 110 K for ethylene and 120 K for ethane.