Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation


Autoria(s): Rojas-Mayorga, Cintia Karina; Bonilla-Petriciolet, Adrian; Silvestre-Albero, Joaquín; Aguayo-Villarreal, Ismael A.; Mendoza-Castillo, Didilia I.
Contribuinte(s)

Universidad de Alicante. Departamento de Química Inorgánica

Universidad de Alicante. Instituto Universitario de Materiales

Materiales Avanzados

Data(s)

13/09/2016

13/09/2016

15/11/2015

Resumo

New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency – cost tradeoff is crucial for implementing new defluoridation technologies.

Authors acknowledge the financial support provided by CONA-CYT, DGEST, Instituto Tecnológico de Aguascalientes (Mexico), Universidad de Alicante (Spain) and MINECO (Projects PCIN-2013-057 and MAT2013- 45008-P).

Identificador

Applied Surface Science. 2015, 355: 748-760. doi:10.1016/j.apsusc.2015.07.163

0169-4332 (Print)

1873-5584 (Online)

http://hdl.handle.net/10045/57843

10.1016/j.apsusc.2015.07.163

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dx.doi.org/10.1016/j.apsusc.2015.07.163

Direitos

© 2015 Elsevier B.V.

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Bone char #Metallic surface modification #Adsorption #Water defluoridation #Química Inorgánica
Tipo

info:eu-repo/semantics/article