14 resultados para 44A35
Resumo:
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05
Resumo:
2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.
Resumo:
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30
Resumo:
2000 Mathematics Subject Classification: 44A40, 44A35
Resumo:
2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80
Resumo:
2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63
Resumo:
2000 Mathematics Subject Classification: Primary 46F12, Secondary 44A15, 44A35
Resumo:
Mathematics Subject Classification: 44A05, 44A35
Resumo:
MSC 2010: 44A35, 35L20, 35J05, 35J25
Resumo:
Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.
Resumo:
Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).
Resumo:
Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.
Resumo:
MSC 2010: 44A35, 44A40
Resumo:
MSC 2010: 44A35, 44A45, 44A40, 35K20, 35K05