Explicit Solution of Bitsadze-Samarskii Problem


Autoria(s): Dimovski, Ivan; Tsankov, Yulian
Data(s)

18/10/2012

18/10/2012

2010

Resumo

Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.

In this paper we find an explicit solution of Bitsadze-Samarskii problem for Laplace equation using operational calculus approach, based on two non-classical one-dimensional convolutions and a two-dimensional convolution. In fact, the explicit solution obtained is a way for effective summation of a solution obtained in the form of non-harmonic Fourier sine-expansion. This explicit solution is suitable for numerical calculation too. *2000 Mathematics Subject Classification: 44A35, 35L20, 35J05, 35J25.

1 Partially supported by Project ID 09 0129 ITMSFA with Nat. Sci. Fund. Ministry of Educ. Youth and Sci., Bulgaria. 2 Partially supported by Grand No 132 of NSF of Bulgaria.

Identificador

Union of Bulgarian Mathematicians, Vol. 39, No 1, (2010), 114p-122p

1313-3330

http://hdl.handle.net/10525/1843

Idioma(s)

en

Publicador

Union of Bulgarian Mathematicians

Palavras-Chave #Nonlocal BVP #Right-Inverse Operator #Extended Duamel Principle #Generalized Solution #Non-Classical Convolution #Multiplier #Multiplier Fraction
Tipo

Article