Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems
Data(s) |
19/10/2012
19/10/2012
2011
|
---|---|
Resumo |
Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗). Direct algebraic operational calculi for functions u(x, y, t), continuous in a domain of the form D = [0, a] × [0, b] × [0, ∞), are proposed. Along with the classical Duhamel convolution, the construction uses also two non-classical convolutions for the operators ∂2x and ∂2y. These three one-dimensional convolutions are combined into one three-dimensional convolution u ∗ v in C(D). Instead of J. Mikusi´nski’s approach, based on convolution fractions, we develop systematically an alternative approach, based on the multiplier fractions of the convolution algebra (C(D), ∗). *2000 Mathematics Subject Classification: 44A35, 44A45, 35K20, 35K15, 35J25. 1. Partially supported by Project D ID 02/25/2009 “Integral Transform Methods, Special Functions and Applications”, by NSF – Ministry of Education, Youth and Science, Bulgaria. 2. Partially supported by Grant N 132 of NSF of Bulgaria. |
Identificador |
Union of Bulgarian Mathematicians, Vol. 40, No 1, (2011), 169p-175p 1313-3330 |
Idioma(s) |
en |
Publicador |
Union of Bulgarian Mathematicians |
Palavras-Chave | #Duhamel Convolution #Convolution Algebra #Multiplier #Multiplier Fraction #Divisor of Zero #Numerical Operator |
Tipo |
Article |