On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces
Data(s) |
28/08/2010
28/08/2010
2006
|
---|---|
Resumo |
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30 In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space. * Supported by 04/UR/15-02. |
Identificador |
Fractional Calculus and Applied Analysis, Vol. 9, No 1, (2006), 43p-56p 1311-0454 |
Idioma(s) |
en |
Publicador |
Institute of Mathematics and Informatics Bulgarian Academy of Sciences |
Palavras-Chave | #Dunkl Transform #Bochner-Riesz Means #Partial Dunkl Integrals #Besov-Dunkl Spaces #44A15 #44A35 #46E30 |
Tipo |
Article |