981 resultados para zeros of Gram polynomials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate polynomials satisfying a three-term recurrence relation of the form B-n(x) = (x - beta(n))beta(n-1)(x) - alpha(n)xB(n-2)(x), with positive recurrence coefficients alpha(n+1),beta(n) (n = 1, 2,...). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where alpha(n) --> alpha and beta(n) --> beta and show that the zeros of beta(n) are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials. (C) 2002 Elsevier B.V. (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

in this paper, we derive an explicit expression for the parameter sequences of a chain sequence in terms of the corresponding orthogonal polynomials and their associated polynomials. We use this to study the orthogonal polynomials K-n((lambda.,M,k)) associated with the probability measure dphi(lambda,M,k;x), which is the Gegenbauer measure of parameter lambda + 1 with two additional mass points at +/-k. When k = 1 we obtain information on the polynomials K-n((lambda.,M)) which are the symmetric Koornwinder polynomials. Monotonicity properties of the zeros of K-n((lambda,M,k)) in relation to M and k are also given. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of A0-stability of BDF methods and proof that zero-stable BDF methods are A0-stable using the Schur-Cohn criterion. With this result we have that zero-stable BDF methods are stiffly-stable. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the scattering equations recently proposed by Cachazo, He and Yuan in the special kinematics where their solutions can be identified with the zeros of the Jacobi polynomials. This allows for a non-trivial two-parameter family of kinematics. We present explicit and compact formulas for the n-gluon and n-graviton partial scattering amplitudes for our special kinematics in terms of Jacobi polynomials. We also provide alternative expressions in terms of gamma functions. We give an interpretation of the common reduced determinant appearing in the amplitudes as the product of the squares of the eigenfrequencies of small oscillations of a system whose equilibrium is the solutions of the scattering equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider some of the relations that exist between real Szegö polynomials and certain para-orthogonal polynomials defined on the unit circle, which are again related to certain orthogonal polynomials on [-1, 1] through the transformation x = (z1/2+z1/2)/2. Using these relations we study the interpolatory quadrature rule based on the zeros of polynomials which are linear combinations of the orthogonal polynomials on [-1, 1]. In the case of any symmetric quadrature rule on [-1, 1], its associated quadrature rule on the unit circle is also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to contribute to the understanding of complex polynomials and Blaschke products, two very important function classes in mathematics. For a polynomial, $f,$ of degree $n,$ we study when it is possible to write $f$ as a composition $f=g\circ h$, where $g$ and $h$ are polynomials, each of degree less than $n.$ A polynomial is defined to be \emph{decomposable }if such an $h$ and $g$ exist, and a polynomial is said to be \emph{indecomposable} if no such $h$ and $g$ exist. We apply the results of Rickards in \cite{key-2}. We show that $$C_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,(z-z_{1})(z-z_{2})...(z-z_{n})\,\mbox{is decomposable}\},$$ has measure $0$ when considered a subset of $\mathbb{R}^{2n}.$ Using this we prove the stronger result that $$D_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,\mbox{There exists\,}a\in\mathbb{C}\,\,\mbox{with}\,\,(z-z_{1})(z-z_{2})...(z-z_{n})(z-a)\,\mbox{decomposable}\},$$ also has measure zero when considered a subset of $\mathbb{R}^{2n}.$ We show that for any polynomial $p$, there exists an $a\in\mathbb{C}$ such that $p(z)(z-a)$ is indecomposable, and we also examine the case of $D_{5}$ in detail. The main work of this paper studies finite Blaschke products, analytic functions on $\overline{\mathbb{D}}$ that map $\partial\mathbb{D}$ to $\partial\mathbb{D}.$ In analogy with polynomials, we discuss when a degree $n$ Blaschke product, $B,$ can be written as a composition $C\circ D$, where $C$ and $D$ are finite Blaschke products, each of degree less than $n.$ Decomposable and indecomposable are defined analogously. Our main results are divided into two sections. First, we equate a condition on the zeros of the Blaschke product with the existence of a decomposition where the right-hand factor, $D,$ has degree $2.$ We also equate decomposability of a Blaschke product, $B,$ with the existence of a Poncelet curve, whose foci are a subset of the zeros of $B,$ such that the Poncelet curve satisfies certain tangency conditions. This result is hard to apply in general, but has a very nice geometric interpretation when we desire a composition where the right-hand factor is degree 2 or 3. Our second section of finite Blaschke product results builds off of the work of Cowen in \cite{key-3}. For a finite Blaschke product $B,$ Cowen defines the so-called monodromy group, $G_{B},$ of the finite Blaschke product. He then equates the decomposability of a finite Blaschke product, $B,$ with the existence of a nontrivial partition, $\mathcal{P},$ of the branches of $B^{-1}(z),$ such that $G_{B}$ respects $\mathcal{P}$. We present an in-depth analysis of how to calculate $G_{B}$, extending Cowen's description. These methods allow us to equate the existence of a decomposition where the left-hand factor has degree 2, with a simple condition on the critical points of the Blaschke product. In addition we are able to put a condition of the structure of $G_{B}$ for any decomposable Blaschke product satisfying certain normalization conditions. The final section of this paper discusses how one can put the results of the paper into practice to determine, if a particular Blaschke product is decomposable. We compare three major algorithms. The first is a brute force technique where one searches through the zero set of $B$ for subsets which could be the zero set of $D$, exhaustively searching for a successful decomposition $B(z)=C(D(z)).$ The second algorithm involves simply examining the cardinality of the image, under $B,$ of the set of critical points of $B.$ For a degree $n$ Blaschke product, $B,$ if this cardinality is greater than $\frac{n}{2}$, the Blaschke product is indecomposable. The final algorithm attempts to apply the geometric interpretation of decomposability given by our theorem concerning the existence of a particular Poncelet curve. The final two algorithms can be implemented easily with the use of an HTML