A realization of the q-deformed harmonic oscillator: rogers-Szegö and Stieltjes-Wigert polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/03/2003
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) We discuss some results from q-series that can account for the foundations for the introduction of orthogonal polynomials on the circle and on the line, namely the Rogers-Szegö and Stieltjes-Wigert polynomials. These polynomials are explicitly written and their orthogonality is verified. Explicit realizations of the raising and lowering operators for these polynomials are introduced in analogy to those of the Hermite polynomials that are shown to obey the q-commutation relations associated with the q-deformed harmonic oscillator. |
Formato |
148-157 |
Identificador |
http://dx.doi.org/10.1590/S0103-97332003000100015 Brazilian Journal of Physics. Sociedade Brasileira de Física, v. 33, n. 1, p. 148-157, 2003. 0103-9733 http://hdl.handle.net/11449/24692 10.1590/S0103-97332003000100015 S0103-97332003000100015 S0103-97332003000100015.pdf |
Idioma(s) |
eng |
Publicador |
Sociedade Brasileira de Física |
Relação |
Brazilian Journal of Physics |
Direitos |
openAccess |
Tipo |
info:eu-repo/semantics/article |