A realization of the q-deformed harmonic oscillator: rogers-Szegö and Stieltjes-Wigert polynomials


Autoria(s): Galetti, Diogenes
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

01/03/2003

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

We discuss some results from q-series that can account for the foundations for the introduction of orthogonal polynomials on the circle and on the line, namely the Rogers-Szegö and Stieltjes-Wigert polynomials. These polynomials are explicitly written and their orthogonality is verified. Explicit realizations of the raising and lowering operators for these polynomials are introduced in analogy to those of the Hermite polynomials that are shown to obey the q-commutation relations associated with the q-deformed harmonic oscillator.

Formato

148-157

Identificador

http://dx.doi.org/10.1590/S0103-97332003000100015

Brazilian Journal of Physics. Sociedade Brasileira de Física, v. 33, n. 1, p. 148-157, 2003.

0103-9733

http://hdl.handle.net/11449/24692

10.1590/S0103-97332003000100015

S0103-97332003000100015

S0103-97332003000100015.pdf

Idioma(s)

eng

Publicador

Sociedade Brasileira de Física

Relação

Brazilian Journal of Physics

Direitos

openAccess

Tipo

info:eu-repo/semantics/article