Szegö polynomials: quadrature rules on the unit circle and on [-1, 1]


Autoria(s): Bressan, R.; Menegasso, S. F.; Sri Ranga, A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/06/2003

Resumo

We consider some of the relations that exist between real Szegö polynomials and certain para-orthogonal polynomials defined on the unit circle, which are again related to certain orthogonal polynomials on [-1, 1] through the transformation x = (z1/2+z1/2)/2. Using these relations we study the interpolatory quadrature rule based on the zeros of polynomials which are linear combinations of the orthogonal polynomials on [-1, 1]. In the case of any symmetric quadrature rule on [-1, 1], its associated quadrature rule on the unit circle is also given.

Formato

567-584

Identificador

http://projecteuclid.org/euclid.rmjm/1181069967

Rocky Mountain Journal of Mathematics, v. 33, n. 2, p. 567-584, 2003.

0035-7596

http://hdl.handle.net/11449/130458

http://dx.doi.org/10.1216/rmjm/1181069967

WOS:000186061600009

2-s2.0-0242507783

2-s2.0-0242507783.pdf

Idioma(s)

eng

Publicador

Rocky Mt Math Consortium

Relação

Rocky Mountain Journal of Mathematics

Direitos

openAccess

Tipo

info:eu-repo/semantics/article