On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/07/2005
|
Resumo |
This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved. |
Formato |
15-29 |
Identificador |
http://dx.doi.org/10.1016/j.cam.2004.09.032 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 179, n. 1-2, p. 15-29, 2005. 0377-0427 http://hdl.handle.net/11449/33768 10.1016/j.cam.2004.09.032 WOS:000229137200004 WOS000229137200004.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Computational and Applied Mathematics |
Direitos |
openAccess |
Palavras-Chave | #L-orthogonal polynomials #symmetric distribution functions #Three term recurrence relations |
Tipo |
info:eu-repo/semantics/article |